hdu 5423 Rikka with Tree 乱搞

题意:众所周知,萌萌哒六花不擅长数学,所以勇太给了她一些数学问题做练习,其中有一道是这样的:
对于一棵树TT,令F(T,i)F(T,i)为点1到点ii的最短距离(边长是1).
两棵树AA和BB是相似的当且仅当他们顶点数相同且对于任意的ii都有F(A,i)=F(B,i)F(A,i)=F(B,i).
两棵树AA和BB是不同的当且仅当他们定点数不同或者存在一个ii使得以1号点为根的时候ii在两棵树中的父亲不同。
一棵树AA是特殊的当且仅当不存在一棵和它不同的树和它相似。
现在勇太想知道一棵树到底是不是特殊的。
当然,这个问题对于萌萌哒六花来说实在是太难了,你可以帮帮她吗?

画画图找下规律就行了。。

//author: CHC
//First Edit Time:  2015-08-29 19:06
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <set>
#include <vector>
#include <map>
#include <queue>
#include <set>
#include <algorithm>
#include <limits>
using namespace std;
typedef long long LL;
const int MAXN=1e+4;
const int INF = numeric_limits<int>::max();
const LL LL_INF= numeric_limits<LL>::max();
struct Edge {
    int to,next;
    Edge(){}
    Edge(int _to,int _next):to(_to),next(_next){}
}e[MAXN<<1];
int head[MAXN],tot;
void init(){
    memset(head,-1,sizeof(head));
    tot=0;
}
void AddEdge(int u,int v){
    e[tot]=Edge(v,head[u]);
    head[u]=tot++;
    e[tot]=Edge(u,head[v]);
    head[v]=tot++;
}
int dep[MAXN],cnt[MAXN];
void dfs(int u,int fa,int d){
    dep[u]=d;
    ++cnt[d];
    for(int i=head[u];~i;i=e[i].next){
        int v=e[i].to;
        if(v!=fa){
            dfs(v,u,d+1);
        }
    }
}
int main()
{
    int n;
    while(~scanf("%d",&n)){
        init();
        for(int i=0,x,y;i<n-1;i++){
            scanf("%d%d",&x,&y);
            AddEdge(x,y);
        }
        memset(cnt,0,sizeof(cnt));
        dfs(1,1,0);
        int t=0;
        while(cnt[t]==1)++t;
        --t;
        LL tx=cnt[t+1];
        int flag=0;
        for(int i=t+1;i<n;i++){
            if(cnt[i]==0)break;
            //printf("%d %I64d\n",cnt[i],tx);
            if(cnt[i]<tx){
                flag=1;break;
            }
            tx=tx*2;
        }
        if(flag)puts("NO");
        else puts("YES");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值