Lynstery's blog

Think twice and code once.

排序:
默认
按更新时间
按访问量

博客搬家..

https://lynstery.coding.me/

2018-03-18 20:34:28

阅读数:257

评论数:0

[最小割] BZOJ3144: [Hnoi2013]切糕

经典的最小割建图,用 ∞∞\infty 边体现限制条件。 inline char gc(){ static char buf[100000],*p1=buf,*p2=buf; return p1==p2&&(p2=(p1=buf)+fr...

2018-02-21 22:26:54

阅读数:135

评论数:0

[最小割+Tarjan] BZOJ1797: [Ahoi2009]Mincut 最小割

关于最小割唯一性: 在残余网络上跑 TarjanTarjanTarjan 。记 idxidxid_x为点 xxx 所在 SCCSCCSCC 的编号。 将每个 SCCSCCSCC 缩成一个点,得到的新图就只含有满流边了。那么新图的任一 S−TS−TS-T 割都对应原图的某个最小割。 对于任意一...

2018-02-21 21:47:30

阅读数:115

评论数:0

《最小割模型在信息学竞赛中的应用》——学习笔记

《最小割模型在信息学竞赛中的应用》学习笔记 基础 流网络的定义,容量限制,反对称性,流守恒性… 我们约定对于点集X,YX,YX,Y ,令 f(X,Y)=∑u∈X∑v∈Yf(u,v)f(X,Y)=∑u∈X∑v∈Yf(u,v)f(X,Y)=\sum_{u \in X}\sum_{v \in ...

2018-02-16 00:44:50

阅读数:283

评论数:0

[最小割] BZOJ2400: Optimal Marks

论文题。 二进制每位独立算,每个编号就只有 010101 两种。可以看作分成两个集合,用最小割模型解。 题目要求在边权和最小的前提下,还要保证编号和最小。这个只需要每次从 TTT 出发倒着走,能到的点一定是在 TTT 集合内,其他的都看作是 000,这样就是最小的。 #include&a...

2018-02-14 23:39:21

阅读数:108

评论数:0

[Matrix-Tree 定理] SPOJ HIGH - Highways

模板题。 Matrix−TreeMatrix−TreeMatrix-Tree 定理用于求生成树个数。 给出一个无向图 GGG ,GGG 的度数矩阵 DDD 是一个 n∗nn∗nn∗n 的矩阵,当 i≠ji≠ji \neq j 时, di,j=0di,j=0d_{i,j}=0 ,di,idi,i...

2018-02-13 21:34:38

阅读数:126

评论数:0

[二进制分组 + 凸包] BZOJ4140: 共点圆加强版

对于给出的一个圆心 (xi,yi)(xi,yi)(x_i,y_i) ,在它内部点 (x,y)(x,y)(x,y) 需满足 (x−xi)2+(y−yi)2≤x2i+y2i⇔x2+y2≤2xxi+2yyi⇔yi≥−xyxi+x2+y22y(x−xi)2+(y−yi)2≤xi2+yi2⇔x2+y2≤2...

2018-02-11 23:47:36

阅读数:146

评论数:0

斯特林数(Stirling)——学习笔记

第一类斯特林数 s(n,m)s(n,m)s(n,m) 表示 nnn 个元素组成 mmm 个圆排列 有 s(n,m)=s(n−1,m−1)+s(n−1,m)∗(n−1)s(n,m)=s(n−1,m−1)+s(n−1,m)∗(n−1) s(n,m)=s(n−1,m−1)+s(n−1,m)∗(n...

2018-02-11 20:30:25

阅读数:291

评论数:0

伯努利数(Bernoulli)——学习笔记

http://www.bernoulli.org/ http://blog.csdn.net/whai362/article/details/43148939 https://baike.baidu.com/item/%E4%BC%AF%E5%8A%AA%E5%88%A9%E6%...

2018-02-10 22:21:54

阅读数:560

评论数:0

[分治FFT] HDU5730 Shell Necklace

分治 FFTFFTFFT,就是 CDQCDQCDQ 分治加 FFTFFTFFT。 用来解决这样的问题:已知 g(x)g(x)g(x),且 f(i)=∑i=0n−1f(i)g(n−i)f(i)=∑i=0n−1f(i)g(n−i) f(i)=\sum_{i=0}^{n-1} f(i)g(n-i) ...

2018-02-09 23:25:52

阅读数:126

评论数:0

[原根 + NTT] LOJ#2183 BZOJ3992:「SDOI2015」序列统计

做法比较显然,应该就是这样的 DPDPDP : f(i)=∑j∗k≡i(modm)f′(j)g(k)f(i)=∑j∗k≡i(modm)f′(j)g(k) f(i)=\sum_{j*k \equiv i \pmod m} f'(j)g(k) 可以用原根转化为加法,就变成 f(i)=∑j+...

2018-02-09 15:42:33

阅读数:153

评论数:0

快速数论变换(NTT)——学习笔记

NTT 嗷, 很简单。 FFTFFTFFT 之所以能加速,是由于有主n次单位根 wn=e2πinwn=e2πinw_n=e^{\frac{2\pi i}{n}} ,的那些很好的性质。而在自然数域,模 PPP 意义下,可以把 wnwnw_n 换成 gP−1ngP−1ng^{\frac{P-1}{...

2018-02-08 21:30:20

阅读数:925

评论数:0

多项式求逆——学习笔记

基本概念 多项式的度:对于一个多项式 A(x)A(x)A(x) ,称其最高项次数为多项式的度,记作 degAdegAdeg A 多项式的逆元:对于 A(x)A(x)A(x) 若存在 B(x)B(x)B(x) 满足 degB≤degAdegB≤degAdegB \le degA 且 A(x...

2018-02-08 18:56:03

阅读数:196

评论数:0

【施工ing】生成函数与多项式——学习笔记

生成函数大概是一个无穷幂级数形式的函数,我们只关心它的形式,而不会去带入 xx 求值。可以看做是多项式,只是带入没有意义。它的一些运算可以对应组合意义,所以能通过它解决一些组合问题。 一般生成函数(OGF): f(x)=a0+a1x1+a2x2+a3x3+a4x4...f(x)=a_0+a_1...

2018-01-18 21:16:11

阅读数:255

评论数:0

Emacs 配置

记一下… (custom-set-variables ;; custom-set-variables was added by Custom. ;; If you edit it by hand, you could mess it up, so be careful. ;; You...

2017-12-29 10:32:56

阅读数:160

评论数:0

[线性基] BZOJ2844: albus就是要第一个出场

有个结论:一个可异或得到的数,用原来 nn 个数异或得到它都有 2n−cnt2^{n-cnt} 种组合方法。想想发现是很有道理的,就是不要把消出的 n−cntn-cnt 扔掉,00 怎么异或都不变的,所以是 2n−cnt2^{n-cnt}。 知道这个就做完了。#include<cstdio...

2017-12-24 21:20:10

阅读数:144

评论数:0

[DFS树 + 线性基] BZOJ2115: [Wc2011] Xor

线性基裸题。需要知道一个东西:对于随意一条 11 到 nn 的路径的异或和,都可以通过任意一条 11 到 nn 路径的异或和与图中的一些环的异或和来组合得到。 然后就 DFSDFS 树找简单环,瞎搞搞…#include<cstdio> #include<algorithm>...

2017-12-24 19:30:12

阅读数:136

评论数:0

[线性基] HDU3949: XOR

裸题。线性基消成对角后, 最高位为 i 的数是唯一的。这个性质很好,使得选的数集中最大数的最高位,在异或后一定是 11。设 bib_i 为线性基第 ii 小的数,kik_i 为二进制下第 ii 位。 答案就是 Xor b[i]ki \text{Xor } b[i]k_i。#include<...

2017-12-24 18:53:18

阅读数:111

评论数:0

线性基——学习笔记

http://blog.csdn.net/qaq__qaq/article/details/53812883 https://blog.sengxian.com/algorithms/linear-basis https://www.cnblogs.com/vb4896/p/6149022.h...

2017-12-19 21:20:21

阅读数:203

评论数:0

[WQS二分套WQS二分] Codeforces #739E. Gosha is hunting

O(n3)O(n^3) DPDP 很显然。要优化就只能 WQSWQS 二分了。每种食物肯定是都用完的,所以相当于强制选若干个 AA 物品,若干个 BB 物品。发现物品选越多,收益是会增加的越来越慢的,所以这两维都可以 WQSWQS 二分。就能做到 O(nlog2n)O(nlog^2 n) ,很优美...

2017-12-19 19:12:39

阅读数:396

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭