hashtable hashmap

本文深入解析哈希表的实现原理,包括内部数据结构、冲突解决策略等,并通过Java实例展示了哈希查找的过程。同时,对比了哈希表与HashMap的区别,特别是线程安全和键值对的限制。

hashtable

1.hashtable的实现

内部用一个entry数据组,来保存所有的数据。在向hashtable中put时,先计算key的hash值,然后根据hash值计算index值,作为数据table的下标,由于可能出现两个插入值同index情况,所以为这些一样的entry对象,构造成一个链表存放。即一个entry对象需要这些属性:key, value, next 。
java的hashtable就是哈希查找。

hashtable与hashmap的不同

1.hashmap不同线程安全的
hashmap是键值对象,允许null key和null value,而hashtable不允许。
2.hashtable是线程安全的一个collection.
hashtable的方法是synchronize的。

内容概要:本文围绕无人机自主水下传感网络(UASNs)中自主水下航行器(AUV)的路径规划问题展开研究,提出采用遗传算法(Genetic Algorithm, GA)进行优化求解,并通过Matlab代码实现仿真验证。研究重点在于利用遗传算法的全局搜索能力,解决水下复杂环境中AUV的高效路径规划问题,提升数据采集效率与网络性能。文中详细阐述了问题建模、适应度函数设计、约束条件处理及算法实现流程,展示了GA在应对多目标、非线性、动态变化水下环境中的可行性与有效性。同时,文档还列举了大量相关科研方向与Matlab仿真实例,涵盖路径规划、电力系统、机器学习、通信优化等多个领域,体现出较强的技术综合性与科研指【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)导价值。; 适合人群:具备一定Matlab编程基础,从事智能优化算法、路径规划、水下传感网络或相关领域研究的研究生、科研人员及工程技术人员,尤其适合正在开展无人机、AUV或智能优化应用研究的1-5年经验研究人员。; 使用场景及目标:①学习遗传算法在复杂路径规划问题中的建模与实现方法;②掌握Matlab在UASNs与AUV路径规划中的仿真技术;③借鉴多领域科研案例拓展研究思路,推动算法在实际水下探测、环境监测、军事侦察等场景的应用。; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点关注遗传算法的编码方式、交叉变异策略与适应度函数设计;同时可参考文中列出的其他研究方向进行横向拓展,强化对智能优化算法在多学科交叉应用的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值