map和set

1.关联式容器
关联式容器也是用来存储数据的,与序列式容器不同的是,其里面存储的是<key, value>结构的键值对,在数据检索时比序列式容器效率更高。

2. 键值对
用来表示具有一一对应关系的一种结构,该结构中一般只包含两个成员变量key和value,key代表键值,value表示与key对应的信息。

3. 树形结构的关联式容器
根据应用场景的不同,STL总共实现了两种不同结构的管理式容器:树型结构与哈希结构。树型结构的关联式容器主要有四种:map、set、multimap、multiset。这四种容器的共同点是:使用平衡搜索树(即红黑树)作为其底层结果,容器中的元素是一个有序的序列。

set

  1. set是按照一定次序存储元素的容器。
  2. 在set中,元素的value也标识它(value就是key,类型为T),并且每个value必须是唯一的。set中的元素不能在容器中修改(元素总是const),但是可以从容器中插入或删除它们。
  3. 在内部,set中的元素总是按照其内部比较对象(类型比较)所指示的特定严格弱排序准则进行排序。
  4. set容器通过key访问单个元素的速度通常比unordered_set容器慢,但它们允许根据顺序对子集进行直接迭代。
  5. set在底层是用二叉搜索树(红黑树)实现的。

set的构造
在这里插入图片描述

set的容量
在这里插入图片描述

#include <set>
void TestSet()
{
	// 用数组array中的元素构造set
	int array[] = { 1, 3, 5, 7, 9, 2, 4, 6, 8, 0, 1, 3, 5, 7, 9, 2, 4, 6, 8, 0 };
	set<int> s(array, array + sizeof(array) / sizeof(array));
	cout << s.size() << endl;
	// 正向打印set中的元素,从打印结果中可以看出:set可去重
	for (auto& e : s)
		cout << e << " ";
	cout << endl;
	// 使用迭代器逆向打印set中的元素
	for (auto it = s.rbegin(); it != s.rend(); ++it)
		cout << *it << " ";
	cout << endl;
	// set中值为3的元素出现了几次
	cout << s.count(3) << endl;
}

map

  1. map是关联容器,它按照特定的次序(按照key来比较)存储由键值key和值value组合而成的元素。
  2. 在map中,键值key通常用于排序和惟一地标识元素,而值value中存储与此键值key关联的内容。键值key和值value的类型可能不同,并且在map的内部,key与value通过成员类型value_type绑定在一起,为其取别名称为pair:typedef pair value_type;
  3. 在内部,map中的元素总是按照键值key进行比较排序的。
  4. map中通过键值访问单个元素的速度通常比unordered_map容器慢,但map允许根据顺序对元素进行直接迭代(即对map中的元素进行迭代时,可以得到一个有序的序列)。
  5. map支持下标访问符,即在[]中放入key,就可以找到与key对应的value。
#include <string>
#include <map>
void TestMap()
{
	map<string, string> m;
	// 向map中插入元素的方式:
	// 将键值对<"peach","桃子">插入map中,用pair直接来构造键值对
	m.insert(pair<string, string>("peach", "桃子"));
	// 将键值对<"peach","桃子">插入map中,用make_pair函数来构造键值对
	m.insert(make_pair("banan", "香蕉"));

	// 借用operator[]向map中插入元素
	/*
	operator[]的原理是:
	用<key, T()>构造一个键值对,然后调用insert()函数将该键值对插入到map中
	如果key已经存在,插入失败,insert函数返回该key所在位置的迭代器
	如果key不存在,插入成功,insert函数返回新插入元素所在位置的迭代器
	operator[]函数最后将insert返回值键值对中的value返回
    */
    // 将<"apple", "">插入map中,插入成功,返回value的引用,将“苹果”赋值给该引用结果,
	m["apple"] = "苹果";
	// key不存在时抛异常
	//m.at("waterme") = "水蜜桃";
	cout << m.size() << endl;
	// 用迭代器去遍历map中的元素,可以得到一个按照key排序的序列
	for (auto& e : m)
		cout << e.first << "--->" << e.second << endl;
	cout << endl;
	// map中的键值对key一定是唯一的,如果key存在将插入失败
	auto ret = m.insert(make_pair("peach", "桃色"));
	if (ret.second)
		cout << "<peach, 桃色>不在map中, 已经插入" << endl;
	else
		cout << "键值为peach的元素已经存在:" << ret.first->first << "--->" <<
		ret.first->second << " 插入失败" << endl;
	// 删除key为"apple"的元素
	m.erase("apple");
	if (1 == m.count("apple"))
		cout << "apple还在" << endl;
	else
		cout << "apple被吃了" << endl;
}

multiset

  1. multiset是按照特定顺序存储元素的容器,其中元素是可以重复的。
  2. 在multiset中,元素的value也会识别它(因为multiset中本身存储的就是<value, value>组成的键值对,因此value本身就是key,key就是value,类型为T). multiset元素的值不能在容器中进行修改(因为元素总是const的),但可以从容器中插入或删除。
  3. 在内部,multiset中的元素总是按照其内部比较规则(类型比较)所指示的特定严格弱排序准则进行排序。
  4. multiset容器通过key访问单个元素的速度通常比unordered_multiset容器慢,但当使用迭代器遍历时会得到一个有序序列。
  5. multiset底层结构为二叉搜索树(红黑树)。

multimap
1.multimap的存储由<key,value>键值对组成,和map相比较,multimap中的key是可以重复的.

2.multimap中没有重载的operator[]操作.

3.元素默认按照小于来比较.

AVL树

在这里插入图片描述
它的左右子树都是AVL树。
左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)。
它有n个结点,其高度可保持在O(logn),搜索时间复杂度为O(logn)。

AVL树节点的定义:

template<class T>
struct AVLTreeNode
{
	AVLTreeNode(const T& data)
		: _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
		, _data(data), _bf(0)
	{}
	AVLTreeNode<T>* _pLeft; // 该节点的左孩子
	AVLTreeNode<T>* _pRight; // 该节点的右孩子
	AVLTreeNode<T>* _pParent; // 该节点的双亲
	T _data;
	int _bf; // 该节点的平衡因子
};

AVL树的插入
AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点
  2. 调整节点的平衡因子

在这里插入图片描述

bool Insert(const T& data) {
	while (pParent){
		// 更新双亲的平衡因子
		if (pCur == pParent->_pLeft)
			pParent->_bf--;
		else
			pParent->_bf++;
		// 更新后检测双亲的平衡因子
		if (0 == pParent->_bf)
			break;
		else if (1 == pParent->_bf || -1 == pParent->_bf){
			// 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1 或者 -1 ,说明以双亲为根的二叉树
				// 的高度增加了一层,因此需要继续向上调整
				pCur = pParent;
			pParent = pCur->_pParent;
		}
		else
		{
			// 双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以pParent
			// 为根的树进行旋转处理
			if (2 == pParent->_bf){
				// ...
			}
			else{
				// ...
			}
		}
	}
	return true;
}

AVL树的旋转

  1. 新节点插入较高左子树的左侧—左左:右单旋
    在这里插入图片描述

  2. 新节点插入较高右子树的右侧—右右:左单旋
    在这里插入图片描述

  3. 新节点插入较高左子树的右侧—左右:先左单旋再右单旋

在这里插入图片描述

  1. 新节点插入较高右子树的左侧—右左:先右单旋再左单旋

在这里插入图片描述
AVL树的插入总结
在这里插入图片描述
平衡因子树的检查
每个节点子树高度差的绝对值不超过1
节点的平衡因子是否计算正确

	bool isBalance()
	{
		return _isBalance(_root);
	}

	bool _isBalance(Node* root)
	{
		if (root == nullptr)
			return true;

		//左右子树高度差是否和平衡因子相等
		int subL = Height(root->_left);
		int subR = Height(root->_right);
		if (root->_bf != subR - subL)
		{
			cout << "节点:" << root->_value << "异常: bf: " << root->_bf << " 高度差:" << subR - subL << endl;
			return false;
		}

		//平衡因子的绝对值知否小于2
		return abs(root->_bf) < 2
			&& _isBalance(root->_left)
			&& _isBalance(root->_right);
	}

	int Height(Node* root)
	{
		if (root == nullptr)
			return 0;
		int left = Height(root->_left);
		int right = Height(root->_right);
		return left > right ? left + 1 : right + 1;
	}

©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页