论文阅读——Combinatorial Optimization by Graph Pointer Networks and Hierarchical Reinforcement Learning Abstract 用 Reinforcement Learning 训练 Graph Pointer Networks来解决 Traveling Salesman Problem 问题。
TensorFlow——tf.nn.embedding_lookup用法 官方tf.nn.embedding_lookup:通过给定的 ids 查找 params 的词向量tf.nn.embedding_lookup( params, ids, max_norm=None, name=None)代码讲解核心:输出结果维度为shape(ids) + shape(params)[1:]示例1:params 和 ids 都只有一维,就是简单的索引输入:params=(pdim1,),ids=(idim1,)输出结果:shape=(ids)即sha
论文阅读——序列到序列模型(Seq2seq) 论文:Sequence to Sequence Learning with Neural Networks作者:Ilya Sutskever et al.1 Introduction背景:深度神经网络(Deep Neural Networks)非常强大,能解决很多困难问题(如语音识别、视觉图像识别)。问题:尽管DNNs 具有灵活性和强大功能,但它只能应用于输入和目标可以用固定维数的向量进行合理编码的问题。这是一个很大的限制,因为许多重要的问题需要用长度未知的序列来表达。因此,一种学习将序列.
论文阅读——注意力机制(Attention Mechanism) 论文:Neural Machine Translation by Jointly Learning to Align and Translate作者:Dzmirty Bahdanau etal.1 Introduction背景:神经机器翻译(Neural Machine Translation,NMT)被提出,其试图建立和训练一个单一大型的神经网络来阅读句子并输出正确翻译。大多数NMT模型基于编码器-解码器(encoder-decoders)。问题:神经网络需要将源句(source se..
TensorFlow——变量管理tf.get_variable和tf.variable_scope 在TensorFlow中,可以通过变量名称来创建或获取一个变量。通过这种方式,在不同的函数中可以直接通过变量的名称来使用变量,而不需要将变量通过参数的形式传递。其主要由tf.get_variable和tf.variable_scope这两个函数实现。下面分别介绍如何使用这两个函数。tf.get_variable和tf.Variable用法基本相同,最大的区别在于tf.Variable函数中的变量名称"name="是可选参数。但是对于tf.get_variable函数来说,变量名称是一个必填参数。下面
TensorFlow——命名空间tf.variable_scope和tf.name_scope的区别 tf.variable_scope和tf.name_scope都提供了命名空间管理的功能。这两个函数在大部分情况下是等价的,唯一的区别是在使用tf.get_variable函数时。简单来说,tf.get_variable函数受tf.variable_scope命名空间影响,不受tf.name_scope命名空间影响。如下面代码所示:import tensorflow as tfwith tf.variable_scope("a1"): # 在命名空间a1下获取变量“a1”,于是得到的变
网络功能虚拟化(NFV) 一、NFV是什么?根据《网络功能虚拟化:概述、优势、推动者、挑战以及行动呼吁》[ ISGN12 ]白皮书,NFV的总体目标被定义为利用标准的IT虚拟化技术将众多网络设备类型合并成工业标准级的大容量服务器、交换机和存储设备,并在数据中心、网络结点和终端用户处所部署。 网络功能虚拟化(network functions virtualization,NFV)被定义为运行再虚拟机上且利用软件实现网络功能的虚拟化技术。二、NFV框架NFV框架由以下三个操作域组成。虚...