CMTSA
码龄4年
关注
提问 私信
  • 博客:9,117
    9,117
    总访问量
  • 11
    原创
  • 2,249,577
    排名
  • 1
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:荷兰
  • 加入CSDN时间: 2021-06-14
博客简介:

CMTSA的博客

查看详细资料
个人成就
  • 获得3次点赞
  • 内容获得2次评论
  • 获得16次收藏
创作历程
  • 11篇
    2021年
成就勋章
TA的专栏
  • Scipy
    1篇
  • Seaborn
    1篇
  • 人工智能
    2篇
  • 论文阅读
    4篇
  • 网络技术
    1篇
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

论文阅读——Combinatorial Optimization by Graph Pointer Networks and Hierarchical Reinforcement Learning

Abstract 用 Reinforcement Learning 训练 Graph Pointer Networks来解决 Traveling Salesman Problem 问题。
原创
发布博客 2021.10.19 ·
976 阅读 ·
2 点赞 ·
1 评论 ·
4 收藏

TensorFlow——tf.nn.embedding_lookup用法

官方tf.nn.embedding_lookup:通过给定的 ids 查找 params 的词向量tf.nn.embedding_lookup( params, ids, max_norm=None, name=None)代码讲解核心:输出结果维度为shape(ids) + shape(params)[1:]示例1:params 和 ids 都只有一维,就是简单的索引输入:params=(pdim1,),ids=(idim1,)输出结果:shape=(ids)即sha
原创
发布博客 2021.09.26 ·
314 阅读 ·
0 点赞 ·
1 评论 ·
2 收藏

论文阅读——序列到序列模型(Seq2seq)

论文:Sequence to Sequence Learning with Neural Networks作者:Ilya Sutskever et al.1 Introduction背景:深度神经网络(Deep Neural Networks)非常强大,能解决很多困难问题(如语音识别、视觉图像识别)。问题:尽管DNNs 具有灵活性和强大功能,但它只能应用于输入和目标可以用固定维数的向量进行合理编码的问题。这是一个很大的限制,因为许多重要的问题需要用长度未知的序列来表达。因此,一种学习将序列.
原创
发布博客 2021.09.23 ·
1314 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

论文阅读——指针网络(Pointer Networks)

论文:Pointer Networks作者:Oriol Vinyals et al.1 Introduction背景:问题:解决办法:
原创
发布博客 2021.09.23 ·
2705 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

论文阅读——注意力机制(Attention Mechanism)

论文:Neural Machine Translation by Jointly Learning to Align and Translate作者:Dzmirty Bahdanau etal.1 Introduction背景:神经机器翻译(Neural Machine Translation,NMT)被提出,其试图建立和训练一个单一大型的神经网络来阅读句子并输出正确翻译。大多数NMT模型基于编码器-解码器(encoder-decoders)。问题:神经网络需要将源句(source se..
原创
发布博客 2021.09.20 ·
756 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

TensorFlow——变量管理tf.get_variable和tf.variable_scope

在TensorFlow中,可以通过变量名称来创建或获取一个变量。通过这种方式,在不同的函数中可以直接通过变量的名称来使用变量,而不需要将变量通过参数的形式传递。其主要由tf.get_variable和tf.variable_scope这两个函数实现。下面分别介绍如何使用这两个函数。tf.get_variable和tf.Variable用法基本相同,最大的区别在于tf.Variable函数中的变量名称"name="是可选参数。但是对于tf.get_variable函数来说,变量名称是一个必填参数。下面
原创
发布博客 2021.09.08 ·
196 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

TensorFlow——命名空间tf.variable_scope和tf.name_scope的区别

tf.variable_scope和tf.name_scope都提供了命名空间管理的功能。这两个函数在大部分情况下是等价的,唯一的区别是在使用tf.get_variable函数时。简单来说,tf.get_variable函数受tf.variable_scope命名空间影响,不受tf.name_scope命名空间影响。如下面代码所示:import tensorflow as tfwith tf.variable_scope("a1"): # 在命名空间a1下获取变量“a1”,于是得到的变
原创
发布博客 2021.09.04 ·
106 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

scipy.stats简单索引

Q-Q图 scipy.stats.probplot
原创
发布博客 2021.08.12 ·
113 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Seaborn各种图总结

箱型图 seaborn.boxplot分布图 seaborn.displot直方图 seaborn.histplot
原创
发布博客 2021.08.12 ·
122 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

AI方向用python写代码所需相关文档总结

Seaborn官方文档 http://seaborn.pydata.org/index.html
原创
发布博客 2021.08.08 ·
109 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

网络功能虚拟化(NFV)

一、NFV是什么?根据《网络功能虚拟化:概述、优势、推动者、挑战以及行动呼吁》[ ISGN12 ]白皮书,NFV的总体目标被定义为利用标准的IT虚拟化技术将众多网络设备类型合并成工业标准级的大容量服务器、交换机和存储设备,并在数据中心、网络结点和终端用户处所部署。 网络功能虚拟化(network functions virtualization,NFV)被定义为运行再虚拟机上且利用软件实现网络功能的虚拟化技术。二、NFV框架NFV框架由以下三个操作域组成。虚...
原创
发布博客 2021.07.26 ·
2275 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏