【分词】文本挖掘的分词原理

前言

在做文本挖掘的时候,首先要做的预处理就是分词。英文单词天然有空格隔开容易按照空格分词,但是也有时候需要把多个单词做为一个分词,比如一些名词如“New York”,需要做为一个词看待。而中文由于没有空格,分词就是一个需要专门去解决的问题了。无论是英文还是中文,分词的原理都是类似的,本文就对文本挖掘时的分词原理做一个总结。

1. 分词的基本原理

现代分词都是基于统计的分词,而统计的样本内容来自于一些标准的语料库。假如有一个句子:“小明来到荔湾区”,我们期望语料库统计后分词的结果是:“小明/来到/荔湾/区”,而不是“小明/来到/荔/湾区”。那么如何做到这一点呢?

从统计的角度,我们期望"小明/来到/荔湾/区"这个分词后句子出现的概率要比“小明/来到/荔/湾区”大。如果用数学的语言来说说,如果有一个句子 S S S, 它有m种分词选项如下
A 11 A 12 ⋯ A 1 n 1 A 21 A 22 ⋯ A 2 n 2 ⋯ ⋯ ⋯ A m 1 A m 2 . . . A m n m A_{11}A_{12} \cdots A_{1n1}\\ A_{21}A_{22} \cdots A_{2n2}\\ \cdots \cdots \cdots \\ A_{m1}A_{m2}...A_{mn_m}\\ A11A12A1n1A21A22A2n2Am1Am2...Amnm
其中下标 n i n_i ni代表第 i i i种分词的词个数。如果我们从中选择了最优的第 r r r种分词方法,那么这种分词方法对应的统计分布概率应该最大,即:

r = a r g   m a x ⏟ i P ( A i 1 , A i 2 , ⋯   , A i n i ) r = \begin{matrix} \underbrace{arg \ max } \\ i \end{matrix}P(A_{i1},A_{i2},\cdots,A_{ini}) r= arg maxiP(Ai1,Ai2,,Aini)
但是我们的概率分布 P ( A i 1 , A i 2 , ⋯   , A i n i ) P(A_{i1},A_{i2}, \cdots ,A_{ini}) P(Ai1,Ai2,,Aini)并不好求出来,因为它涉及到 n i n_i ni个分词的联合分布。在NLP中,为了简化计算,我们通常使用马尔科夫假设,即每一个分词出现的概率仅仅和前一个分词有关,即:
P ( A i j ∣ A i 1 , A i 2 , ⋯   , A i ( j − 1 ) ) = P ( A i j ∣ A i ( j − 1 ) ) P(A_{ij}|A_{i1},A_{i2}, \cdots ,A_{i(j−1)})=P(A_{ij}|A_{i(j−1)}) P(AijAi1,Ai2,,Ai(j1))=P(AijAi(j1))

在前面我们讲MCMC采样时,也用到了相同的假设来简化模型复杂度。使用了马尔科夫假设,则我们的联合分布就好求了,即:
P ( A i 1 , A i 2 , ⋯   , A i n i ) = P ( A i 1 ) P ( A i 2 ∣ A i 1 ) P ( A i 3 ∣ A i 2 ) ⋯ P ( A i n i ∣ A i ( n i − 1 ) ) P(A_{i1},A_{i2},\cdots,A_{in_i})=P(A_{i1})P(A_{i2}|A_{i1})P(A_{i3}|A_{i2}) \cdots P(A_{in_i}|A_{i(n_{i−1})}) P(Ai1,Ai2,,Aini)=P(Ai1)P(Ai2Ai1)P(Ai3Ai2)P(AiniAi(ni1))
而通过我们的标准语料库,我们可以近似的计算出所有的分词之间的二元条件概率,比如任意两个词w1,w2,它们的条件概率分布可以近似的表示为:
P ( w 2 ∣ w 1 ) = P ( w 1 , w 2 ) P ( w 1 ) ≈ f r e q ( w 1 , w 2 ) f r e q ( w 1 )     P ( w 1 ∣ w 2 ) = P ( w 2 , w 1 ) P ( w 2 ) ≈ f r e q ( w 1 , w 2 ) f r e q ( w 2 ) P(w2|w1)=\frac{P(w1,w2)}{P(w1)}≈\frac{freq(w1,w2)}{freq(w1)} ~\\ ~\\ P(w1|w2)=\frac{P(w2,w1)}{P(w2)}≈\frac{freq(w1,w2)}{freq(w2)} P(w2w1)=P(w1)P(w1,w2)freq(w1)freq(w1,w2)  P(w1w2)=P(w2)P(w2,w1)freq(w2)freq(w1,w2)

其中 f r e q ( w 1 , w 2 ) freq(w1,w2) freq(w1,w2)表示 w 1 w1 w1, w 2 w2 w2在语料库中相邻一起出现的次数,而其中 f r e q ( w 1 ) , f r e q ( w 2 ) freq(w1),freq(w2) freq(w1),freq(w2)分别表示 w 1 , w 2 w1,w2 w1,w2在语料库中出现的统计次数。

利用语料库建立的统计概率,对于一个新的句子,我们就可以通过计算各种分词方法对应的联合分布概率,找到最大概率对应的分词方法,即为最优分词

2. N元模型

当然,你会说,只依赖于前一个词太武断了,我们能不能依赖于前两个词呢?即:
P ( A i 1 , A i 2 , ⋯   , A i n i ) = P ( A i 1 ) P ( A i 2 ∣ A i 1 ) P ( A i 3 ∣ A i 1 , A i 2 ) . . . P ( A i n i ∣ A i ( n i − 2 ) , A i ( n i − 1 ) ) P(A_{i1},A_{i2},\cdots,Aini)=P(Ai1)P(Ai2|Ai1)P(Ai3|Ai1,Ai2)...P(Aini|Ai(ni−2),Ai(ni−1)) P(Ai1,Ai2,,Aini)=P(Ai1)P(Ai2Ai1)P(Ai3Ai1Ai2)...P(AiniAi(ni2)Ai(ni1))

这样也是可以的,只不过这样联合分布的计算量就大大增加了。我们一般称只依赖于前一个词的模型为二元模型(Bi-Gram model),而依赖于前两个词的模型为三元模型。以此类推,我们可以建立四元模型,五元模型,…一直到通用的 N N N元模型。越往后,概率分布的计算复杂度越高。当然算法的原理是类似的。

在实际应用中, N N N一般都较小,一般都小于4,主要原因是 N N N元模型概率分布的空间复杂度为 O ( ∣ V ∣ N ) O(|V|^N) O(VN),其中 ∣ V ∣ |V| V为语料库大小,而 N N N为模型的元数,当N增大时,复杂度呈指数级的增长。

N元模型的分词方法虽然很好,但是要在实际中应用也有很多问题,首先,某些生僻词,或者相邻分词联合分布在语料库中没有,概率为0。这种情况我们一般会使用拉普拉斯平滑,即给它一个较小的概率值,这个方法在朴素贝叶斯算法原理小结也有讲到。第二个问题是如果句子长,分词有很多情况,计算量也非常大,这时我们可以用下一节维特比算法来优化算法时间复杂度。

3. 维特比算法与分词

为了简化原理描述,我们本节的讨论都是以二元模型为基础。

对于一个有很多分词可能的长句子,我们当然可以用暴力方法去计算出所有的分词可能的概率,再找出最优分词方法。但是用维特比算法可以大大简化求出最优分词的时间。

大家一般知道维特比算法是用于隐式马尔科夫模型HMM解码算法的,但是它是一个通用的求序列最短路径的方法,不光可以用于HMM,也可以用于其他的序列最短路径算法,比如最优分词。

维特比算法采用的是动态规划来解决这个最优分词问题的,动态规划要求局部路径也是最优路径的一部分,很显然我们的问题是成立的。首先我们看一个简单的分词例子:“人生如梦境”。它的可能分词可以用下面的概率图表示:


图中的箭头为通过统计语料库而得到的对应的各分词位置BEMS(开始位置,结束位置,中间位置,单词)的条件概率。比如 P ( 生 ∣ 人 ) = 0.17 P(生|人)=0.17 P()=0.17。有了这个图,维特比算法需要找到从Start到End之间的一条最短路径。对于在End之前的任意一个当前局部节点,我们需要得到到达该节点的最大概率 δ δ δ,和记录到达当前节点满足最大概率的前一节点位置 Ψ Ψ Ψ

我们先用这个例子来观察维特比算法的过程。首先我们初始化有:
δ ( 人 ) = 0.26 Ψ ( 人 ) = S t a r t δ ( 人 生 ) = 0.44 Ψ ( 人 生 ) = S t a r t δ(人)=0.26Ψ(人)=Startδ(人生)=0.44Ψ(人生)=Start δ()=0.26Ψ()=Startδ()=0.44Ψ()=Start
对于节点"生",它只有一个前向节点,因此有:
δ ( 生 ) = δ ( 人 ) P ( 生 ∣ 人 ) = 0.0442 Ψ ( 生 ) = 人 δ(生)=δ(人)P(生|人)=0.0442Ψ(生)=人 δ()=δ()P()=0.0442Ψ()=
对于节点"如",就稍微复杂一点了,因为它有多个前向节点,我们要计算出到“如”概率最大的路径:

δ ( 如 ) = m a x { δ ( 生 ) P ( 如 ∣ 生 ) , δ ( 人 生 ) P ( 如 ∣ 人 生 ) } = m a x { 0.01680 , 0.3168 } = 0.3168   Ψ ( 如 ) = 人 生 δ(如)=max\{δ(生)P(如|生),δ(人生)P(如|人生)\}=max\{0.01680,0.3168\}=0.3168 \ Ψ(如)=人生 δ()=max{δ()P()δ()P()}=max{0.01680,0.3168}=0.3168 Ψ()=
类似的方法可以用于其他节点如下:
δ ( 如 梦 ) = δ ( 人 生 ) P ( 如 梦 ∣ 人 生 ) = 0.242 Ψ ( 如 梦 ) = 人 生 δ ( 梦 ) = δ ( 如 ) P ( 梦 ∣ 如 ) = 0.1996 Ψ ( 梦 ) = 如 δ ( 境 ) = m a x { δ ( 梦 ) P ( 境 ∣ 梦 ) , δ ( 如 梦 ) P ( 境 ∣ 如 梦 ) } = m a x { 0.0359 , 0.0315 } = 0.0359 Ψ ( 境 ) = 梦 δ ( 梦 境 ) = δ ( 如 ) P ( 梦 境 ∣ 如 ) = 0.1616 Ψ ( 梦 境 ) = 如 δ(如梦)=δ(人生)P(如梦|人生)=0.242Ψ(如梦)=人生 \\ δ(梦)=δ(如)P(梦|如)=0.1996Ψ(梦)=如\\ δ(境)=max\{δ(梦)P(境|梦),δ(如梦)P(境|如梦)\}=max\{0.0359,0.0315\}=0.0359Ψ(境)=梦\\ δ(梦境)=δ(如)P(梦境|如)=0.1616Ψ(梦境)=如 δ()=δ()P()=0.242Ψ()=δ()=δ()P()=0.1996Ψ()=δ()=max{δ()P(),δ()P()}=max{0.0359,0.0315}=0.0359Ψ()=δ()=δ()P()=0.1616Ψ()=
最后我们看看最终节点End:
δ ( E n d ) = m a x { δ ( 梦 境 ) P ( E n d ∣ 梦 境 ) , δ ( 境 ) P ( E n d ∣ 境 ) } = m a x { 0.0396 , 0.0047 } = 0.0396   Ψ ( E n d ) = 梦 境 δ(End)=max\{δ(梦境)P(End|梦境),δ(境)P(End|境)\}=max\{0.0396,0.0047\}=0.0396\ Ψ(End)=梦境 δ(End)=max{δ()P(End),δ()P(End)}=max{0.0396,0.0047}=0.0396 Ψ(End)=
由于最后的最优解为“梦境”,现在我们开始用 Ψ Ψ Ψ反推:
Ψ ( E n d ) = 梦 境 → Ψ ( 梦 境 ) = 如 → Ψ ( 如 ) = 人 生 → Ψ ( 人 生 ) = s t a r t Ψ(End)=梦境→Ψ(梦境) = 如→Ψ(如) = 人生→Ψ(人生) = start Ψ(End)=Ψ()=Ψ()=Ψ()=start
从而最终的分词结果为"人生/如/梦境"。是不是很简单呢。

由于维特比算法我会在后面讲隐式马尔科夫模型HMM解码算法时详细解释,这里就不归纳了。

4. 常用分词工具

对于文本挖掘中需要的分词功能,一般我们会用现有的工具。简单的英文分词不需要任何工具,通过空格和标点符号就可以分词了,而进一步的英文分词推荐使用nltk。对于中文分词,则推荐用结巴分词(jieba)。这些工具使用都很简单。你的分词没有特别的需求直接使用这些分词工具就可以了。

5. 结语

分词是文本挖掘的预处理的重要的一步,分词完成后,我们可以继续做一些其他的特征工程,比如向量化(vectorize),TF-IDF以及Hash trick,这些我们后面再讲。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值