Pytorch基础之张量的存储方式及维度操作:size,shape,view,reshape,contiguous

本文介绍了PyTorch中张量的存储方式,包括如何根据张量下标访问内存中的元素。接着详细阐述了如何获取张量的维度大小和数目,如size()和shape()方法的应用。此外,还讨论了张量维度变换的关键方法——view()和reshape(),强调了它们的区别以及contiguous()的作用,特别指出在涉及步长和维度兼容性问题时的使用场景。
摘要由CSDN通过智能技术生成

参考书目:张校捷,《深入浅出PyTorch:从模型到源码》

Pytorch中张量的存储

假设存在一个k维张量,其维数为[ n 1 , n 2 . . . n k n_1,n_2...n_k n1,n2...nk],在计算机的实际存储过程中为一个1维的向量,向量的大小为 n 1 ∗ n 2 ∗ . . . ∗ n k n_1*n_2*...*n_k n1n2...nk。在读取张量某一位置的元素数据时,假设此元素的下标为 ( k 1 , k 2 . . . k k ) (k_1,k_2...k_k) (k

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值