4828: [Hnoi2017]大佬

4828: [Hnoi2017]大佬

Time Limit: 30 Sec  Memory Limit: 256 MB
Submit: 82  Solved: 47
[Submit][Status][Discuss]

Description

人们总是难免会碰到大佬。他们趾高气昂地谈论凡人不能理解的算法和数据结构,走到任何一个地方,大佬的气场
就能让周围的人吓得瑟瑟发抖,不敢言语。你作为一个OIER,面对这样的事情非常不开心,于是发表了对大佬不敬
的言论。大佬便对你开始了报复,你也不示弱,扬言要打倒大佬。现在给你讲解一下什么是大佬,大佬除了是神犇
以外,还有着强大的自信心,自信程度可以被量化为一个正整数 C(1<=C<=10^8),想要打倒一个大佬的唯一方法
是摧毁 Ta的自信心,也就是让大佬的自信值等于 0(恰好等于 0,不能小于 0 )。由于你被大佬盯上了,所以你
需要准备好 n(1<=n<=100)天来和大佬较量,因为这 n天大佬只会嘲讽你动摇你的自信,到了第n+1天,如果大佬发
现你还不服,就会直接虐到你服,这样你就丧失斗争的能力了。你的自信程度同样也可以被量化,我们用 mc (1 <
= mc <= 100)来表示你的自信值上限。在第i天(i>=1),大佬会对你发动一次嘲讽,使你的自信值减小a[i],如
果这个时刻你的自信值小于0了,那么你就丧失斗争能力,也就失败了(特别注意你的自信值为0的时候还可以继续
和大佬斗争)。在这一天,大佬对你发动嘲讽之后,如果你的自信值仍大于等于0,你能且仅能选择如下的行为之
一:
1.还一句嘴,大佬会有点惊讶,导致大佬的自信值C减小1。
2.做一天的水题,使得自己的当前自信值增加  w[i],并将新自信值和自信值上限  mc比
较,若新自信值大于mc,则新自信值更新为mc。例如,mc=50,当前自信值为40,若
w[i]=5,则新自信值为45,若w[i]=11,则新自信值为50。
3.让自己的等级值L加1。
4.让自己的讽刺能力F乘以自己当前等级L,使讽刺能力F更新为F*L。
5.怼大佬,让大佬的自信值C减小F。并在怼完大佬之后,你自己的等级L自动降为0,讽刺能力F降为1。
由于怼大佬比较掉人品,所以这个操作只能做不超过2次。特别注意的是,在任何时候,你不能让大佬的自信值为
负,因为自信值为负,对大佬来说意味着屈辱,而大佬但凡遇到屈辱就会进化为更厉害的大佬直接虐飞你。在第1
天,在你被攻击之前,你的自信是满的(初始自信值等于自信值上限mc),你的讽刺能力F是1,等级是0。现在由
于你得罪了大佬,你需要准备和大佬正面杠,你知道世界上一共有m(1<=m<=20)个大佬,他们的嘲讽时间都是 n
天,而且第 i天的嘲讽值都是 a[i]。不管和哪个大佬较量,你在第i天做水题的自信回涨都是w[i]。这m个大佬中
只会有一个来和你较量(n天里都是这个大佬和你较量),但是作为你,你需要知道对于任意一个大佬,你是否能
摧毁他的自信,也就是让他的自信值恰好等于0。和某一个大佬较量时,其他大佬不会插手。

Input

第一行三个正整数n,m,mc。分别表示有n天和m个大佬,你的自信上限为mc。
接下来一行是用空格隔开的n个数,其中第i(1<=i<=n)个表示a[i]。
接下来一行是用空格隔开的n个数,其中第i(1<=i<=n)个表示w[i]。
接下来m行,每行一个正整数,其中第k(1<=k<=m)行的正整数C[k]表示第k个大佬的初
始自信值。
1  ≤n,mc  ≤100;  1≤m≤20; 1≤a[i],w[i]≤mc; 1≤C[i] ≤10

Output

共m行,如果能战胜第k个大佬(让他的自信值恰好等于0),那么第k行输出1,否则输出0。

Sample Input

10 20 100
22 18 15 16 20 19 33 15 38 49
92 14 94 92 66 94 1 16 90 51
4
5
9
338
5222
549
7491
9
123
3288
3
1
2191
833
3
6991
2754
3231
360
6

Sample Output

1
1
1
0
0
0
0
1
1
0
1
1
0
0
1
0
0
0
0
1

HINT

Source

[Submit][Status][Discuss]

首先肯定是利用"苟活"策略,尽量多地腾出时间来攻击大佬
定义状态f[i][j]:前i天剩余j血量,能攻击大佬的最多次数
大力dp一下求出一个值d,在n天里最多能用于做不是回血操作的操作的次数
那么对于m次询问,就变成判定能否在d天内凑出刚好清空该大佬血量的方案
定义二元组(F,L)为构造讽刺值为F,能力值为L的最少天数
因为d的限制,这样的状态不会很多,可以大力BFS出来所有这样的状态
(能够凑出的F所含的质因子一定不超过100,把那些超过的去掉就能发现这个性质了)
当BFS过程结束后,枚举每个状态,储存成一些二元组(u,v),
表示只用3,4,5操作,造成u点伤害需要的最少回合为v
怼大佬不能超过两次,如果选择两次,那么能构造出一种击败大佬的方案,等价于满足不等式
u1 + u2 + (d - v1 - v2) >= c,u1 + u2 <= c
第一个式子移向一下,就是u1 - v1 + u2 - v2 >= c - d
于是每个二元组按照u排序好以后,用u - v当新关键字,two_pointer扫一下就知道是否有解了
只怼一次讨论类似,不怼直接判断就行了
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#include<queue>
using namespace std;
 
const int N = 105;
const int maxm = 1E8 + 5;
const int maxn = 1E6 + 10;
typedef unsigned int u32;
 
struct data{
    int x,y; data(){}
    data(int x,int y): x(x),y(y){}
    bool operator < (const data &B) const
    {
        if (x < B.x) return 1;
        if (x > B.x) return 0;
        return y < B.y;
    }
};
 
int n,m,mc,d,tp,a[N],w[N],f[N][N],stk[maxn],g[maxn],Max[maxn];
u32 mi[31],vis[maxm / 32];
 
map <int,int> V;
queue <data> Q;
map <data,int> M;
 
inline void Mark(const int &x) {vis[x / 32] |= mi[x % 32];}
inline bool Query(const int &x) {return vis[x / 32] & mi[x % 32];}
inline int min(const int &x,const int &y) {return x < y ? x : y;}
inline int max(const int &x,const int &y) {return x > y ? x : y;}
 
void Pre_Work()
{
    mi[0] = 1; for (int i = 1; i < 32; i++) mi[i] = mi[i - 1] << (u32)(1);
    memset(f,-1,sizeof(f)); f[0][mc] = 0;
    for (int i = 0; i < n; i++)
        for (int j = 0; j <= mc; j++)
        {
            if (f[i][j] == -1) continue; d = max(d,f[i][j]);
            int t = j - a[i + 1]; if (t < 0) continue;
            f[i + 1][t] = max(f[i + 1][t],f[i][j] + 1);
            t = min(mc,t + w[i + 1]);
            f[i + 1][t] = max(f[i + 1][t],f[i][j]);
        }
}
 
bool Solve()
{
    int c,tail = tp; scanf("%d",&c);
    if (c < d) return 1;
    for (int i = 1; i <= tp; i++)
    {
        if (stk[i] > c) return 0;
        if (g[i] >= c - d) return 1;
        while (tail && stk[i] + stk[tail] > c) --tail;
        if (tail && g[i] + Max[tail] >= c - d) return 1;
    }
    return 0;
}
 
int main()
{
    #ifdef DMC
        freopen("DMC.txt","r",stdin);
    #endif
     
    cin >> n >> m >> mc;
    for (int i = 1; i <= n; i++) scanf("%d",&a[i]);
    for (int i = 1; i <= n; i++) scanf("%d",&w[i]);
    Pre_Work(); Q.push(data(1,0)); M[data(1,0)] = 0;
    if (!d) {while (m--) puts("0"); return 0;}
    while (!Q.empty())
    {
        data k = Q.front(); Q.pop(); int now = M[k];
        if (Query(k.x)) V[k.x] = min(V[k.x],now + 1);
        else Mark(k.x),stk[++tp] = k.x,V[k.x] = now + 1;
        if (now == d - 1) continue;
        if (!M.count(data(k.x,k.y + 1)))
            M[data(k.x,k.y + 1)] = now + 1,Q.push(data(k.x,k.y + 1));
        if (k.y > 1 && 1LL * k.x * k.y < maxm && !M.count(data(k.x * k.y,k.y)))
            M[data(k.x * k.y,k.y)] = now + 1,Q.push(data(k.x * k.y,k.y));
    }
    sort(stk + 1,stk + tp + 1);
    for (int i = 1; i <= tp; i++)
        g[i] = stk[i] - V[stk[i]],Max[i] = max(Max[i - 1],g[i]);
    while (m--) puts(Solve() ? "1" : "0");
    return 0;
}

阅读更多
版权声明:这个人很懒什么都没有留下 https://blog.csdn.net/CRZbulabula/article/details/70918826
个人分类: 模拟 bfs
上一篇4724: [POI2017]Podzielno
下一篇4820: [Sdoi2017]硬币游戏
想对作者说点什么? 我来说一句
相关热词

没有更多推荐了,返回首页

关闭
关闭
关闭