yolov5训练自己的数据集,零基础小白都能看得懂的教程。YOLOv5 实现目标动态实时检测(训练自己的数据集实现王者荣耀游戏中的识别)yolov5/yolov4/yolov3/>>>>>第二章

第二章:yolov5训练自己的数据集(实时动态检测王者荣耀系列)

1,介绍最终成型效果图

在这里插入图片描述

在上一篇我已经教给大家如何用Vscode搭建环境,让yolov5项目能正常运行起来,并且用项目本身达到训练以及测试检测图片的效果,相信大家已经迫不及待的想训练自己的数据集了吧,这里我也在csdn看了很多文章都不是很全对于零基础的同学来说还是很难掌握,甚至有的同学已经没了心态,准备放弃这个被大家称为“真香”的yolov5开源项目了,这里我希望大家稳住心态,跟着我的脚步动起来,一定能成功,现在我们开始实操吧!

YOLOV5github最新地址:点击我下载

现在我们先做好准备工作提高效率

1,我们在这里创建一个your_Own_data_Set文件夹,里面存放自己的一些数据,
在这里插入图片描述
接下来继续在里面创建images(存放需要训练的原图片.jpg格式),labels(存放标注结果的.txt文件)文件夹
(备注:这里我用的标注工具是makesense.ai,所以省去了xml转txt文件的步骤,怎么样方便吧,是不是特别为你们考虑,主要看其他关于训练自己数据集都是用一些转换格式代码去实现,本博主也是亲身为你们踩了踩坑,哎不提了,基本所有文章都看完了,好难成功,实现起来太复杂)

在这里插入图片描述
2,为自己的数据集图片进行标注处理操作,需要用到makesense.ai标注工具
makesense官方连接 点我进入

在这里插入图片描述
在这里插入图片描述
标注说明:打开makesense.ai官网,进入网页标注,导入自己的图片,进行标注,后保存为ZIP软件包,其中包含VOC XML格式的文件,并将导出后的txt文件解压到your_Own_data_Set\labels中去

在这里插入图片描述

3,我们将对yolov5项目文件中yolov5-master\data下.yaml文件,yolov5-master\models下yolov5s.yaml,yolov5-master\train.py,相关文件进行改动

在这里插入图片描述

yolov5-master\data下.yaml文件说明:这里我们首先复制一份coco128.yaml文件,并对新复制的copy文件进行了改动,原文件中有80个类别,我们不需要那么多,所以根据自己标注工具时,使用的类别数量与类别名称为准,
补充:train: …/your_Own_data_Set/images/
val: …/your_Own_data_Set/images/ 代码中,这两个是我们之前创建好的文件夹路径,用于后续的读取

呼~~~抽支烟,再继续写…有点累了…

在这里插入图片描述
yolov5s.yaml说明:用那个权重文件就修改那个文件中的nc值即可,nc是我们标注类别的数量

在这里插入图片描述
train.py说明
parser.add_argument(’–weights’, type=str, default=‘yolov5s.pt’, help=‘initial weights path’):填写你想使用的权重文件yolov5s.pt:最小速度最快
parser.add_argument(’–cfg’, type=str, default=‘models/yolov5s.yaml’, help=‘model.yaml path’)
填写我们修改的权重文件:yolov5s.pt,配置文件
parser.add_argument(’–data’, type=str, default=‘data/coco128 copy.yaml’, help=‘data.yaml path’):填写我们修改之后的.yaml文件

4,全部配置好后,直接执行train.py文件开始训练,这时候就到了考验显卡的时候,可以耐心的等上一两个小时,可以吃个瓜,看个小电影啥的,千万别手痒玩什么3A大作,否则电脑爆炸还得重新训练。
当程序运行界面出现如下所示并后续不报错的情况下,说明开始训练。

在这里插入图片描述

**5,在训练中,可以随时查看每一轮次训练的结果,可利用tensorboard可视化训练过程,,首先我们通conda控制台进入YOLOv5所在的项目文件夹,首先激活conda环境,输入如下命令行:

conda activate my_py_env

接着输入如下命令:
可视化:进入环境

可视化:进入环境 tensorboard --logdir runs

在这里插入图片描述
如图我们输入代码后会获取一个IP地址我们将地址:http://localhost:6006/#scalars复制粘贴到浏览器中就可以看到图表了

在这里插入图片描述

兄弟们,最基本YOLOV5训练自己的数据集到这里就告一段落了,在下一章我将通过修改内置代码实现王者荣耀实时动态检测,本期有任何问题都可以留言到评论去,我每天都会在,看到就会秒回你们的问题,关注我不迷路哦,拜拜我是你们的好朋友yibao~~~~

已标记关键词 清除标记
<p> <span style="font-size:18px;color:#E53333;"><strong><span style="color:#000000;">课程演示环境:Ubuntu</span><br /> <br /> <span style="color:#000000;">需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:训练自己的数据集》,课程链接https://edu.csdn.net/course/detail/28748</span><br /> <br /> YOLOv4</strong></span><span style="font-size:18px;color:#E53333;"><strong>来了!速度和精度双提升!</strong></span> </p> <p> <span style="font-size:16px;"> </span> </p> <p> <span style="font-size:16px;">与</span><span style="font-size:16px;"> YOLOv3 </span><span style="font-size:16px;">相比,新版本的</span><span style="font-size:16px;"> AP(精度) </span><span style="font-size:16px;">和</span><span style="font-size:16px;"> FPS </span><span style="font-size:16px;">(每秒帧率)分别提高了</span><span style="font-size:16px;"> 10% </span><span style="font-size:16px;">和</span><span style="font-size:16px;"> 12%</span><span style="font-size:16px;">。</span><span></span> </p> <p> <span style="font-size:16px;"> </span> </p> <p> <span style="font-size:16px;">YOLO系列是基于深度学习的端到端实时目标检测方法。本课程将手把手地教大家使用</span><span style="font-size:16px;">labelImg</span><span style="font-size:16px;">标注和使用</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。</span><span></span> </p> <p> <span style="font-size:16px;"> </span> </p> <p> <span style="font-size:16px;">本课程的</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">使用</span><span style="font-size:16px;">AlexAB/darknet</span><span style="font-size:16px;">,在</span><span style="font-size:16px;">Ubuntu</span><span style="font-size:16px;">系统上做项目演示。包括:安装</span><span style="font-size:16px;">YOLOv4、</span><span style="font-size:16px;">标注自己的数据集、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计</span><span style="font-size:16px;">(mAP</span><span style="font-size:16px;">计算和画出</span><span style="font-size:16px;">PR</span><span style="font-size:16px;">曲线</span><span style="font-size:16px;">)</span><span style="font-size:16px;">和先验框聚类分析。还将介绍改善</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">目标训练性能的技巧。</span><span></span> </p> <p> <span style="font-size:16px;"> </span> </p> <p> <span style="font-size:16px;">除本课程《</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">目标检测实战:训练自己的数据集》外,本人将推出有关</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">目标检测的系列课程。请持续关注该系列的其它视频课程,包括:</span><span></span> </p> <p> <span style="font-size:16px;">《</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">目标检测实战:人脸口罩佩戴识别》</span><br /> <span style="font-size:16px;">《</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">目标检测实战:中国交通标志识别》</span><br /> <span style="font-size:16px;">《</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">目标检测:原理与源码解析》</span> </p> <p> <br /> </p> <p> <span style="font-size:16px;"><br /> </span> </p> <p> <span style="font-size:16px;"><img src="https://img-bss.csdn.net/202004260858382698.jpg" alt="" /><br /> </span> </p> <p> <span style="font-size:16px;"><br /> </span> </p> <p> <span style="font-size:16px;"><img src="https://img-bss.csdn.net/202004260858535136.jpg" alt="" /><br /> </span> </p> <p> <span style="font-size:16px;"><img src="https://img-bss.csdn.net/202004260859074920.jpg" alt="" /><br /> </span> </p> <p> <span></span> </p> <p> <span></span> </p>
相关推荐
<p style="background:white;"> <span style="font-family:&#39;微软雅黑&#39;,sans-serif;color:#313d54;">PyTorch</span><span style="font-family:&#39;微软雅黑&#39;,sans-serif;color:#313d54;">版的<span>YOLOv5</span>是轻量而高性能的实时目标检测方法。利用<span>YOLOv5</span>训练完自己的数据集后,如何向大众展示并提供落地的服务呢?<span> </span></span> </p> <p style="background:white;">   </p> <p style="background:white;"> <span style="font-family:&#39;微软雅黑&#39;,sans-serif;color:#313d54;">本课程将提供相应的解决方案,具体讲述如何使用<span>Web</span>应用程序框架<span>Flask</span>进行<span>YOLOv5</span>的<span>Web</span>应用部署。用户可通过客户端浏览器上传图片,经服务器处理后返回图片检测数据并在浏览器中绘制检测结果。<span> </span></span> </p> <p style="background:white;">   </p> <p style="background:white;"> <span style="font-family:&#39;微软雅黑&#39;,sans-serif;color:#313d54;">本课程的<span>YOLOv5</span>使用<span>ultralytics/yolov5</span>,在</span><strong><span style="font-family:&#39;Helvetica&#39;,sans-serif;color:#c00000;">Ubuntu</span></strong><span style="font-family:&#39;微软雅黑&#39;,sans-serif;color:#313d54;">系统上做项目演示,并提供在</span><strong><span style="font-family:&#39;微软雅黑&#39;,sans-serif;color:#c00000;">Windows</span></strong><span style="font-family:&#39;微软雅黑&#39;,sans-serif;color:#313d54;">系统上的部署方式文档。</span> </p> <p style="background:white;"> <span style="font-family:&#39;微软雅黑&#39;,sans-serif;color:#313d54;">本项目采取前后端分离的系统架构和开发方式,减少前后端的耦合。课程包括:<span>YOLOv5</span>的安装、 <span>Flask</span>的安装、<span>YOLOv5</span>的检测<span>API</span>接口python代码、 <span>Flask</span>的服务程序的python代码、前端<span>html</span>代码、<span>CSS</span>代码、<span>Javascript</span>代码、系统部署演示、生产系统部署建议等。</span> </p> <p style="background:white;"> <span style="font-family:&#39;微软雅黑&#39;,sans-serif;color:#313d54;"> </span> </p> <p style="margin-left:0cm;"> 本人推出了有关YOLOv5目标检测的系列课程。请持续关注该系列的其它视频课程,包括: </p> <p> 《YOLOv5(PyTorch)目标检测实战:训练自己的数据集》 </p> <p> Ubuntu系统 <strong><a href="https://edu.csdn.net/course/detail/30793"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/30793</span></a></strong> </p> <p> Windows系统 <strong><a href="https://edu.csdn.net/course/detail/30923"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/30923</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测:原理与源码解析》<strong><a href="https://edu.csdn.net/course/detail/31428"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/31428</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测实战:Flask Web部署》<strong><a href="https://edu.csdn.net/course/detail/31087"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/31087</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测实战:TensorRT加速部署》<span style="background-color:#ffffff;"><strong><a href="https://edu.csdn.net/course/detail/32303"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/32303</span></a></strong></span> </p> <p> <img src="https://img-bss.csdnimg.cn/202010271340349334.jpg" alt="yolov5部署演示" /> </p> <p> <img src="https://img-bss.csdnimg.cn/202010271340598046.jpg" alt="系统架构" /> </p>
<p class="MsoNormal"> <span style="font-family:&#39;微软雅黑&#39;,sans-serif;">YOLO</span><span style="font-family:&#39;微软雅黑&#39;,sans-serif;">系列是基于深度学习的端到端实时目标检测方法。 <span>PyTorch</span>版的<span>YOLOv5</span>轻量而性能高,更加灵活和便利。</span><span style="font-family:微软雅黑, sans-serif;"> </span> </p> <p class="MsoNormal"> <span style="font-family:&#39;微软雅黑&#39;,sans-serif;">本课程将手把手地教大家使用<span>labelImg</span>标注和使用<span>YOLOv5</span>训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。</span><span style="font-family:微软雅黑, sans-serif;"> </span> </p> <p class="MsoNormal"> <span style="font-family:&#39;微软雅黑&#39;,sans-serif;">本课程的<span>YOLOv5</span>使用<span>ultralytics/yolov5</span>,在<span style="color:#e03e2d;"><strong><span>Windows</span></strong></span>系统上做项目演示。包括:安装<span>YOLOv5</span>、标注自己的数据集、准备自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型和性能统计。</span><span style="font-family:微软雅黑, sans-serif;"> </span> </p> <p class="MsoNormal"> <span style="font-family:微软雅黑, sans-serif;">希望学习Ubuntu上演示的同学,请前往 </span><span style="font-family:微软雅黑, sans-serif;">《</span><span style="font-family:微软雅黑, sans-serif;">YOLOv5(PyTorch)</span><span style="font-family:微软雅黑, sans-serif;">实战:训练自己的数据集(Ubuntu)》课程链接:https://edu.csdn.net/course/detail/30793</span><span style="font-family:宋体;"><span style="font-size:14px;"> </span></span> </p> <p style="margin-left:0cm;">   </p> <p style="margin-left:0cm;"> 本人推出了有关YOLOv5目标检测的系列课程。请持续关注该系列的其它视频课程,包括: </p> <p> 《YOLOv5(PyTorch)目标检测实战:训练自己的数据集》 </p> <p> Ubuntu系统 <strong><a href="https://edu.csdn.net/course/detail/30793"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/30793</span></a></strong> </p> <p> Windows系统 <strong><a href="https://edu.csdn.net/course/detail/30923"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/30923</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测:原理与源码解析》<strong><a href="https://edu.csdn.net/course/detail/31428"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/31428</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测实战:Flask Web部署》<strong><a href="https://edu.csdn.net/course/detail/31087"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/31087</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测实战:TensorRT加速部署》<strong><a href="https://edu.csdn.net/course/detail/32303"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/32303</span></a></strong> </p> <p> <img src="https://img-bss.csdnimg.cn/202010090636458614.jpg" alt="课程内容" width="880" height="356" /> </p> <p> <img src="https://img-bss.csdnimg.cn/202010090637068681.jpg" alt="技巧" width="880" height="706" /> </p> <p> <img src="https://img-bss.csdnimg.cn/202010090637267536.jpg" alt="功能" width="880" height="913" /> </p>
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页