欧拉图

1 欧拉图

    定义7-4.1 给定无孤立结点图G,若存在一条路,经过图中海边一次且仅一次,该条路称为欧拉路;若存在一条回路,经过图中海边一次且仅一次,该回路称为欧拉回路
    具有欧拉回路的图称作欧拉图
    定理7-4.2 无向图G具有一条欧拉路,当且仅当G是连通的,且有零个或两个奇数度结点。
    证明 必要性
    设G具有欧拉路,即有点边序列v0e1v1e2v2eiviei+1ekvk,其中结点可能重复出现,但边不重复,因为欧拉路经过所有图G的结点,故图G必是连通的。
    对任意一个不是端点的结点vi,在欧拉路中每当v
i 出现一次,必关联两条边,故vi虽可重复出现,但deg(vi)必是偶数。对于端点,若v0vk,则d(v0)为偶数,即G中无奇数度结点,若端点v0vk不同,则d(v0)为奇数,d(vk)为奇数,G中就有两个奇数度结点。
    充分性
    若图G连通,有零个或两个奇数度结点,我们构造一条欧拉路如下:
    (1)若有两个奇数度结点,则从其中的一个结点开始构造一条迹,即从v0出发经关联边e1“进入”v1,若deg(v1)为偶数,则必可由v1再经关联边e2进入v2,如此进行下去,每边仅取一次。由于G是连通的,故必可到达另一奇数度结点停下,得到一条迹L:v0e1v
1 e2viei+1vk。若G中没有奇数度结点则从任一结点v 0 出发,用上述方法必可回到结点v 0 ,得到上述一条闭迹L1
    (2)若L1通过了G的所有边,则L1就是欧拉路。
    (3)若G中去掉L1后得到子图G′,则G′中每个结点度数为偶数,因为原来的图是连通的,故L1与G′至少有一个结点v
i 重合,在G′中由v i 出发重复(1)的方法,得到闭迹L2
    
(4)当L 1 与L 2 组合在一起,如果恰是G,则即得欧拉路,否则重复(3)可得到闭迹L 3 ,以此类推直到得到一条经过图G中所有边的欧拉路。 
    推论 无向图G具有一条欧拉回路,当且仅当G是连通的,并且所有结点度数全为偶数。
    由于有了欧拉路和欧拉回路的判别准则,因此哥尼斯堡七桥问题立即有了确切的否定答案,因为从图7-4.2中可以看到deg(A)=5,deg(B)=deg(C)=deg(D)=3,故欧拉回路必不存在。
    与七桥问题类似的还有一笔画的判别问题,要判定一个图G是否可一笔画出,有两种情况:一是从图G中某一结点出发,经过图G的每一边一次仅一次到达另一结点。另一种就是从G的某个结点出发,经过G的每一边一次仅一次再回到该结点。上述两种情况分别可以由欧拉路和欧拉回路的判定条件予以解决。如图7-4.3(a)中,因为deg(v2)=deg(v3)=3,deg(v1)=deg(v4)=deg(v5)=2,故必有从v2v3的一笔画。在图7-4.3(b)中所有结点度数均为偶数,所以可以从任一结点出发,一笔画回到原出发点。
                

    欧拉路和欧拉回路的概念,很易推广到有向图中去。
2 有向欧拉图
    定义7-4.2 给定有向图G,通过图中每边一次且仅一次的一条单向路(回路),称作单向欧拉路(回路)。
    定理7-4.2 有向图G具有一条单向欧拉回路,当且仅当是连通的,且每个结点入度等于出度。一个有向图G具有单向欧拉路,当且仅当它是连通的,而且除两个结点外,每个结点的入度等于出度,但这两个结点中,一个结点的入度比出度大1,另一个结点的入度比出度小1。
    这个定理的证明,可以看作是无向图的欧拉路的推广,因为对于有向图的任意一个结点来说,如果入度与出度相等,则该点的总度数为偶数,若入度与出度之差为1时,其总度数为奇数,因此定理7-4.2的证明与定理7-4.1的证明类似。
    例1 计算机鼓轮的设计。设有旋转鼓轮其表面被等分成24个部分,如图7-4.4所示。
                    
    其中每一部分分别用绝缘体或导体组成,绝缘体部分给出信号0,导体部分给出信号1,在图7-4.4中阴影部分表示导体,空白部分表示绝缘体,根据鼓轮的位置,触点将得到信息1101,如果鼓轮沿顺时针方向旋转一个部分,触点将有信息1010。问鼓轮上16个部分怎样安排导体及绝缘体,才能使鼓轮每旋转一个部分,四个触点能得到一组不同的四位二进制数信息。
            
    设有一个八个结点的有向图(图7-4.5),其结点分别记为三位二进制数{000,001,010,011,100,101,110,111},设ai∈{0,1>,从结点a1a2a3可引出两条有向边,其终点分别是a2a30以及a2a3l。该两条边分别记为a1a2a30和a1a2a3l。按照上述方法,对于八个结点的有向图共有16条边,在这种图的任一条路中,其邻接的边必是a1a2a3a4和a2a3a4a5的形式,即是第一条边标号的后三位数与第二条边标号的头三位数相同。因为图中16条边被记成不同的二进制数,可见前述鼓轮转动所得到16个不同位置触点上的二进制信息,即对应于图中的一条欧拉回路。在图7-4.5中,每个结点的入度等于2,出度等于2,故在图中必可找到一条欧拉回路如(e0e1e2e4e9e3e6e13e10e5e11e7e15e14e12e8),根据邻接边的标号记法,这16个二进制数可写成对应的二进制数序列0000100110101111。把这个序列排成环状,即与所求的鼓轮相对应,如图7-4.4所示。

    上面的例子,我们可以把它推广到鼓轮具有n个触点的情况。为此我们只要构造2n-1个结点的有向图,设每个结点标记为n-1位二进制数,从结点a1a2…an-1出发,有一条终点为a2a3…an-10的边,该边记为a1a2…an-10;还有一条边的终点为a2a3…an-11的边,该边记为a1a2…an-11。这样构造的有向图,其每一结点的出度和入度都是2,故必是欧拉图。由于邻接边的标记是第一条边的后n-1位二进制数与第二条边的前n-1位二进制数相同,为此就有一种2n个二进制数的环形排列与所求的鼓轮相对应。



文章转载于:http://class.htu.cn/lisanshuxue/neirong/7_4.htm

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值