推荐系统学习笔记-FNN

由来

在FM之后出现了很多基于FM的升级改造工作,由于计算复杂度等原因,FM通常只对特征进行二阶交叉。但是当面对海量高度稀疏的用户行为反馈数据的情况下,二阶交叉往往是不够的,三阶、四阶甚至更高阶的组合交叉能够进一步提升模型学习能力。

于是就有人参考图像领域CNN通过相邻层连接扩大感受野的做法,使用DNN来对FM显式表达的二阶交叉特征进行再交叉,从而产生更高阶的特征组合,加强模型对数据模式的学习能力。即FNN(Factorization Machine supported Neural Network)模型。

模型预测公式表达

在这里插入图片描述

模型结构

利用DNN对特征进行隐式交叉,可以减轻特征工程的工作,同时也能够将计算时间复杂度控制在一个合理的范围内。

为了加速模型的收敛,充分利用FM的特征表达能力,FNN采用了两阶段训练方式。首先,针对任务构建FM模型,完成模型参数的学习。然后,将FM的参数作为FNN底层参数的初始值。这种两阶段方式的应用,是为了将FM作为先验知识加入到模型中,防止因为数据稀疏带来的歧义造成模型参数偏差。

在特征进行输入之前首先进行分域操作,这种方式也成了后续处理高维稀疏性数据的通用做法,目的是为了减少模型参数量,与FM计算过程保持一致。

在这里插入图片描述
模型中的dense real layer 将FM产出的低维稠密特征向量进行简单拼接,作为下一全连接层的输入,采用tanh作为激活函数,最终使用sigmoid将之进行二分类操作,即0与1

模型效率对比

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丰。。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值