点云配准介绍

1.点云配准
——————————————————————————————————————
点云配准过程,就是求一个两个点云之间的旋转平移矩阵(刚性变换或欧式变换),将源点云(source cloud)变换到目标点云(target cloud)相同的坐标系下。
可以表示为以下的方程:
*Pt* = *R* * *Ps* + *T*
其中,PtPs 就是目标点云和源点云中的一对对应点。而我们要求的就是其中的RT的旋转平移矩阵。
这里,我们并不知道两个点集中点的对应关系,这也是配准的核心问题。
——————————————————————————————————————
2.配准分为粗配准与精配准两步
——————————————————————————————————————
粗配准就是在完全不清楚两个点云的相对位置关系的情况下,找到一个这两个点云近似的旋转平移矩阵。
精配准就是在已知一个旋转平移的初值的情况下(初值大概已经是正确的了),进一步计算得到更加精确的旋转平移矩阵。

从精配准讲起
精配准的模式基本上已经固定为使用ICP算法及各种变种,ICP算法由 Besl and McKay 1992,《Method for registration of 3-D shapes文章提出。文中提到的算法不仅仅考虑了点集与点集之间的配准,还有点集到模型、模型到模型的配准等。

简要介绍以下点集到点集ICP配准的算法:

(1) ICP算法核心是最小化一个目标函数
在这里插入图片描述
(这里的表述与原文略微有些不同,原文是用四元数加上一个偏移向量来表达旋转平移变换)
PtPs就是一对对应点,总共有Np对对应点。这个目标函数实际上就是所有对应点之间的欧氏距离的平方和。

(2)寻找对应点
可是,我们现在并不知道有哪些对应点。因此,我们在有初值的情况下,假设用初始的旋转平移矩阵对源点云进行变换,得到的一个变换后的点云。然后将这个变换后的点云与目标点云进行比较,只要两个点云中存在距离小于一定阈值(ICP中的一个参数),我们就认为这两个点就是对应点。这也是“最邻近点”的来源。

(3)R、T优化
有了对应点后,我们就可以用对应点对旋转R与平移T进行估计。这里R和T只有6个自由度,而我们对应点数量是庞大的(存在多余观测值)。因此,我们可以采用最小二乘等方法求解最优的旋转平移矩阵。数值优化问题。

(4)迭代
我们优化得到一个新的R与T,导致了一些点转换后的位置发生变化,一些最邻近点对也相应发生了变化。因此,我们又回到了步骤2中的寻找最邻近点方法。2.3步骤不停迭代进行,知道满足一些迭代终止条件,如R、T的变化量小于一定值,或者上述目标函数的变化小于一定值,或者邻近点对不再变化等。(ICP中的一个参数)

优化过程是一个贪心的策略。首先固定R和T利用最邻近算法找到最优的点对,然后固定最优的点对来优化R和T,依次反复迭代进行。这两个步骤都使得目标函数值下降,所以ICP算法总是收敛的,这也就是原文中收敛性的证明过程。这种优化思想与K均值聚类的优化思想非常相似,固定类中心优化每个点的类别,固定每个点的类别优化类中心。

关于参数的选择
ICP算法的参数主要有两个。一个是ICP的邻近距离,另外一个是迭代的终止条件。这些参数的选择,与实际的工程应用相关。比如说你的仪器精度是5mm,那么小于5mm是可以认为是对应点,而最终的迭代终止条件也就是匹配点之间平均距离小于5mm。而且这些参数可以由算法逐步迭代减小,最初使用较大的对应点距离参数,然后逐步减小到一个较小的值。需要手动调整一些参数。

3、粗配准
前面介绍到了,ICP算法的基本原理。它需要一个旋转平移矩阵的初值。这个初值如果不太正确,那么由于它的贪心优化的策略,会使其目标函数下降到某一个局部最优点(当然也是一个错误的旋转平移矩阵)。因此,我们需要找到一个比较准确的初值,这就是粗配准需要做的。

粗配准目前来说还是一个难点。针对不同数据,有许多不同的方法被提出。
我们先介绍配准的评价标准,再在这个标准下提出一些搜索策略

**评价标准:**比较通用的一个是LCP(Largetst Common PointSet)。给定两个点集P,Q,找到一个变换T,使得变换后的P与Q的重叠度最大。在变换后的P内任意一点,如果在容差范围内有另外一个Q的点,则认为该点是重合点。重合点占所有点数量的比例就是重叠度。

解决上述LCP问题,最简单粗暴的方法就是遍历。假设点集P,Q的大小分别为m,n。而找到一个刚体变换需要3对对应点。那么蛮力搜索的需要O(m3n3)的复杂度。对于动辄几百万个点的点云,这种时间复杂度是不可接受的。因此,许多搜索策略被提出。比较容易想到的是RANSAC之类的搜索方法。而对于不同的场景特点,可以利用需配准点云的特定信息加快搜索。

先介绍一个适用于各种点云,不需要先验信息的搜索策略,称为4PC(4 Point Congruent)。

搜索策略:4PC搜索策略是在P,Q种找到四个共面的对应点。
在这里插入图片描述
如上图所示(来自4PC原文),这四个共面的点相交于e。这里有两个比例在刚体变化下是不变的
在这里插入图片描述
而4PC将对于三个点的搜索转换为对e,e’的搜索,从而将复杂度降低到了。这四个点的距离越远,计算得到的转换越稳健。但是这里的四个点的搜索依赖于两个点云的重叠度。具体的算法可以参考4-Points Congruent Sets for Robust Pairwise Surface Registration的原文。

4PC算法通用性较好,但是对于重叠度较小、或是噪声较大的数据也会出现配准错误或是运行时间过长的问题。针对于不同的场景很多其他的搜索策略也被提出。

  • 7
    点赞
  • 55
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
点云配准是将多个点云数据集对齐的过程,使它们在同一坐标系下具有一致的位置和方向。传统的点云配准方法通常依赖于RANSAC算法进行局部的特征匹配,并使用迭代优化方法来估计刚体变换参数。然而,这些方法在处理大规模点云数据时效率较低。 近年来,基于Transformer的点云配准方法逐渐受到关注。这些方法通过引入全局结构信息来提高特征匹配的准确性和鲁棒性,从而实现了更高效的点云配准。其中,GeoTransformer是一种基于Transformer的点云配准网络,它能够显著提高匹配的正确性,并实现了无需RANSAC的点云配准。 GeoTransformer利用Transformer来进行全局的特征提取和匹配。它通过将点云的坐标进行映射作为Transformer的位置编码,从而实现了对不同位置的点的区分。这种基于坐标的位置编码是transformation-invariant的,对于点云配准任务是合理的。 通过引入Transformer的全局结构感知能力,GeoTransformer能够更好地处理点云中存在的类似的局部区域,提高匹配的准确性。此外,GeoTransformer的代码已经开源,可以供研究者和开发者使用。 综上所述,基于Transformer的点云配准方法能够利用全局结构信息提高特征匹配的准确性和鲁棒性,实现快速且可靠的点云配准。GeoTransformer是其中的一种方法,通过引入Transformer进行全局特征提取和匹配,实现了无需RANSAC的点云配准

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值