RANSAC算法与outlier

写在前面

  • 通常样本中包含正确数据(inliers,可以被模型描述的数据),也包含异常数据(outliers,偏离正常范围很远、无法适应数学模型的数据),即数据集中含有噪声。这些异常数据可能是由于错误的测量、错误的假设、错误的计算等产生的。

  • RANSAC为Random Sample Consensus的缩写,它是根据一组包含异常数据的样本数据集,计算出数据的数学模型参数,得到有效样本数据的算法。它于1981年由Fischler和Bolles最先提出 。

理解方法

给定样本数据:红+绿+黄 样本点, 要求根据这些数据点拟合椭圆

以ransac拟合椭圆为例,可以看出:

  • 黄色椭圆为拟合结果,
  • 红色点是由ransac随机选择用来拟合的数据点
  • 黑色点是除红色点外距离椭圆距离小于某一阈值的点,而绿色点是距离椭圆距离大于这一阈值的点
    那么,红色+黑色点即为内点,而绿色点为外点

在这里插入图片描述

RANSAC 算法详解

理想计算 给定两个点p1与p2的坐标,确定这两点所构成的直线,要求对于输入的任意点p3,都可以判断它是否在该直线上。初中解析几何知识告诉我们,判断一个点在直线上,只需其与直线上任意两点点斜率都相同即可。实际操作当中,往往会先根据已知的两点算出直线的表达式(点斜式、截距式等等),然后通过向量计算即可方便地判断p3是否在该直线上。
 
最小二乘法 生产实践中的数据往往会有一定的偏差。例如我们知道两个变量X与Y之间呈线性关系,Y=aX+b,我们想确定参数a与b的具体值。通过实验,可以得到一组X与Y的测试值。虽然理论上两个未知数的方程只需要两组值即可确认,但由于系统误差的原因,任意取两点算出的a与b的值都不尽相同。我们希望的是,最后计算得出的理论模型与测试值的误差最小。大学的高等数学课程中,详细阐述了最小二乘法的思想。通过计算最小均方差关于参数a、b的偏导数为零时的值。事实上,在很多情况下,最小二乘法都是线性回归的代名词。
 
遗憾的是,最小二乘法只适合与误差较小的情况。试想一下这种情况,假使需要从一个噪音较大的数据集中提取模型(比方说只有20%的数据时符合模型的)时,最小二乘法就显得力不从心了。例如下图,肉眼可以很轻易地看出一条直线(模式),但算法却找错了。

在这里插入图片描述

RANSAC算法的输入是一组观测数据(往往含有较大的噪声或无效点),一个用于解释观测数据的参数化模型以及一些可信的参数。RANSAC通过反复选择数据中的一组随机子集来达成目标。 被选取的子集被假设为局内点,并用下述方法进行验证:

  1. 随机选择一组样本子集,并假设所选择的子集都为局内点
  2. 寻找一个模型适应于假设的局内点,即所有的未知参数都能从假设的局内点计算得出。
  3. 用1中得到的模型去测试所有的其它数据,如果某个点适用于估计的模型,认为它也是局内点(inlier)。
  4. 如果有足够多的点被归类为假设的局内点,那么估计的模型就足够合理。
  5. 然后,用所有假设的局内点去重新估计模型(譬如使用最小二乘法),因为它仅仅被初始的假设局内点估计过。
  6. 最后,通过估计局内点与模型的错误率来评估模型。
    上述过程被重复执行固定的次数,每次产生的模型要么因为局内点太少而被舍弃,要么因为比现有的模型更好而被选用。

在这里插入图片描述

参考文档

RANSAC 算法解释(https://grunt1223.iteye.com/blog/961063)

RANSAC是一种经典的拟合模型的算法,常用于处理含有噪声的数据。下面是一个简单的Python实现: ```python import random import numpy as np def ransac(data, model, n, k, t, d, debug=False, return_all=False): """ RANSAC算法实现函数 :param data: 待拟合数据 :param model: 用于拟合数据的模型函数,需要能够接受数据和参数并返回模型参数 :param n: 从data中随机取出n个点作为模型的初始参数 :param k: 迭代次数 :param t: 阈值 :param d: 选出的内点比例,大于d的模型将被接受 :param debug: 是否输出debug信息 :param return_all: 是否返回所有模型 :return: 拟合出的最优模型参数 """ iterations = 0 bestfit = None besterr = np.inf best_inliers = None while iterations < k: # 从data中随机取n个点作为模型的初始参数 sample = random.sample(data, n) # 使用随机选出的样本点拟合模型 maybeinliers = model(sample) # 用拟合出的模型计算所有点到模型的距离 alsoinliers = [] for point in data: if point in sample: continue if model(point, maybeinliers) < t: alsoinliers.append(point) # 如果当前模型内点数大于阈值d,认为模型有效 if len(alsoinliers) > d: # 使用所有内点重新拟合模型 bettermodel = model(np.concatenate((sample, alsoinliers))) # 计算拟合误差 thiserr = np.mean([model(point, bettermodel)**2 for point in alsoinliers]) # 如果误差小于之前最优模型的误差,更新最优模型 if thiserr < besterr: bestfit = bettermodel besterr = thiserr best_inliers = np.concatenate((sample, alsoinliers)) iterations += 1 if debug: print('RANSAC: iteration %d with model %s' % (iterations, bestfit)) if bestfit is None: raise ValueError('No good model found') if return_all: return bestfit, best_inliers else: return bestfit ``` 其中,`data`是待拟合数据,`model`是用于拟合数据的模型函数,`n`是从`data`中随机取出的样本点个数,`k`是迭代次数,`t`是距离阈值,`d`是选出的内点比例,`debug`控制是否输出调试信息,`return_all`控制是否返回所有模型。函数返回拟合出的最优模型参数。 例如,假设我们要拟合一组二维坐标点的直线模型,可以使用如下代码: ```python import matplotlib.pyplot as plt # 定义拟合函数 def line_model(data): x = data[:, 0] y = data[:, 1] k, b = np.polyfit(x, y, 1) return k, b # 生成随机数据 np.random.seed(0) x = np.linspace(-10, 10, 100) y = 2 * x + 1 + np.random.randn(100) * 3 data = np.column_stack([x, y]) # 使用RANSAC拟合数据 model = ransac(data, line_model, 2, 100, 1, 50) # 绘制拟合结果 inliers = np.array([p for p in data if line_model(np.array([p])) < 1]) outliers = np.array([p for p in data if line_model(np.array([p])) >= 1]) plt.plot(inliers[:, 0], inliers[:, 1], 'go', label='Inlier') plt.plot(outliers[:, 0], outliers[:, 1], 'ro', label='Outlier') plt.plot(x, model[0] * x + model[1], 'b', label='Model') plt.legend() plt.show() ``` 该代码将生成一组含有噪声的二维坐标点,使用RANSAC算法拟合出最优的直线模型,并绘制出拟合结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一銤阳光

希望分享的内容对你有帮助

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值