使用RNN实现回归(16)

(1)简介

    关于RNN网络模型的介绍,请看https://blog.csdn.net/CSS360/article/details/88587801

(2)代码

import torch
from torch import nn
import numpy as np
import matplotlib.pyplot as plt

# torch.manual_seed(1)    # reproducible

# Hyper Parameters
TIME_STEP = 10  # rnn time step
INPUT_SIZE = 1  # rnn input size
LR = 0.02  # learning rate

# show data
steps = np.linspace(0, np.pi * 2, 100, dtype=np.float32)  # float32 for converting torch FloatTensor
x_np = np.sin(steps)
y_np = np.cos(steps)
plt.plot(steps, y_np, 'r-', label='target (cos)')
plt.plot(steps, x_np, 'b-', label='input (sin)')
plt.legend(loc='best')
plt.show()


class RNN(nn.Module):
    def __init__(self):
        super(RNN, self).__init__()

        self.rnn = nn.RNN(
            input_size=INPUT_SIZE,
            hidden_size=32,  # rnn hidden unit
            num_layers=1,  # number of rnn layer
            batch_first=True,  # input & output will has batch size as 1s dimension. e.g. (batch, time_step, input_size)
        )
        self.out = nn.Linear(32, 1)

    def forward(self, x, h_state):
        # x (batch, time_step, input_size)
        # h_state (n_layers, batch, hidden_size)
        # r_out (batch, time_step, hidden_size)
        r_out, h_state = self.rnn(x, h_state)

        outs = []  # save all predictions
        for time_step in range(r_out.size(1)):  # calculate output for each time step
            outs.append(self.out(r_out[:, time_step, :]))
        return torch.stack(outs, dim=1), h_state

        # instead, for simplicity, you can replace above codes by follows
        # r_out = r_out.view(-1, 32)
        # outs = self.out(r_out)
        # outs = outs.view(-1, TIME_STEP, 1)
        # return outs, h_state

        # or even simpler, since nn.Linear can accept inputs of any dimension
        # and returns outputs with same dimension except for the last
        # outs = self.out(r_out)
        # return outs


rnn = RNN()
print(rnn)

optimizer = torch.optim.Adam(rnn.parameters(), lr=LR)  # optimize all cnn parameters
loss_func = nn.MSELoss()

h_state = None  # for initial hidden state

plt.figure(1, figsize=(12, 5))
plt.ion()  # continuously plot

for step in range(100):
    start, end = step * np.pi, (step + 1) * np.pi  # time range
    # use sin predicts cos
    steps = np.linspace(start, end, TIME_STEP, dtype=np.float32,
                        endpoint=False)  # float32 for converting torch FloatTensor
    x_np = np.sin(steps)
    y_np = np.cos(steps)

    x = torch.from_numpy(x_np[np.newaxis, :, np.newaxis])  # shape (batch, time_step, input_size)
    y = torch.from_numpy(y_np[np.newaxis, :, np.newaxis])

    prediction, h_state = rnn(x, h_state)  # rnn output
    # !! next step is important !!
    h_state = h_state.data  # repack the hidden state, break the connection from last iteration

    loss = loss_func(prediction, y)  # calculate loss
    optimizer.zero_grad()  # clear gradients for this training step
    loss.backward()  # backpropagation, compute gradients
    optimizer.step()  # apply gradients

    # plotting
    plt.plot(steps, y_np.flatten(), 'r-')
    plt.plot(steps, prediction.data.numpy().flatten(), 'b-')
    plt.draw();
    plt.pause(0.05)

plt.ioff()
plt.show()

(3)结果

注:代码主要参考:https://github.com/MorvanZhou

更多《计算机视觉与图形学》知识,可关注下方公众号:
在这里插入图片描述

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
RNN(循环神经网络)是一种具有循环连接的神经网络结构,它能够处理序列数据,并且能够将之前的信息传递到当前时刻。PyTorch是一种流行的深度学习框架,它提供了用于实现和训练神经网络的高级接口。 在PyTorch中,可以使用torch.nn模块来实现一个简单的RNN回归模型。我们可以定义一个RNN模型类继承自nn.Module,并重写其中的forward()方法。forward()方法中定义了从输入到输出的数据流。 在RNN回归问题中,我们要预测一个连续值。输入的数据是一个序列,每个时间步都有一个特征向量。首先,我们需要定义一个RNN层,可以使用nn.RNN()函数来创建。然后,我们可以将输入序列通过RNN层进行处理,并将输出传递给线性层进行回归预测。 具体的步骤如下: 1. 导入必要的库:import torch.nn as nn、import torch.optim as optim。 2. 定义一个RNN回归模型类,继承自nn.Module,并重写其中的forward()方法。 3. 在__init__()方法中,定义RNN层和线性层。可以使用nn.RNN()和nn.Linear()函数来创建。 4. 在forward()方法中,定义网络的前向传播过程。首先将输入数据通过RNN层,并获取输出和隐藏状态。然后将输出传递给线性层,得到回归预测结果。 5. 实例化模型,并定义损失函数和优化器。可以使用nn.MSELoss()作为损失函数,使用optim.SGD()或optim.Adam()作为优化器。 6. 进行训练过程。循环遍历训练数据,将输入和真实标签传递给模型,计算损失并进行反向传播更新参数。 7. 进行测试过程。将测试数据输入模型得到预测结果,并与真实标签进行比较。 通过上述步骤,我们可以使用PyTorch实现一个简单的RNN回归模型,并进行训练和测试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值