系统学习javaweb-08-学习速查案例02

javaweb学习速查案例02

链接:https://csxiaoyaojianxian.github.io/javaweb_study02
名称:酒店订餐系统
目的:常见的javaweb的一些写法总结
说明:未使用javaweb框架,数据使用mysql,根目录下有sql脚本,用户名密码写在c3p0配置文件中

【知识点】

1 连接池c3p0的配置及操作

工具类JdbcUtils中实现常用操作
c3p0配置中,创建连接时指定数据库发送sql语句采用的编码

jdbc:mysql:///hotel?useUnicode=true&characterEncoding=utf8

具体写法:(1)转义字符& (2)CDATA批量转义

<property name="jdbcUrl">jdbc:mysql://localhost:3306/hotel?useUnicode=true&amp;characterEncoding=utf8</property>
<![CDATA[jdbc:mysql://localhost:3306/hotel?useUnicode=true&characterEncoding=utf8]]>

2 重写Object的hashCode、equals、toString方法

Food类

3 通过ResourceBundle对properties配置文件的读取

BeanFactory类中实现

4 service层实例化Dao的优化:通过配置文件提供的类名反射实例化对象

BeanFactory工厂类中定义getInstance方法读取对应的Dao实现类名,供service层调用创建实例

FoodTypeDao dao = new FoodTypeDao();//直接实例化
IFoodTypeDao dao = new FoodTypeDao();//对象创建不能写死
IFoodTypeDao dao = BeanFactory.getInstance("foodTypeDao", IFoodTypeDao.class) ;//声明接口的引用变量,指向通过配置文件实例化的实现该接口的类

5 抽取转发、重定向的共用方法

WebUtils中定义,servlet调用

//定义方法
private void goTo(HttpServletRequest request, HttpServletResponse response,Object uri)
        throws ServletException, IOException {
    if(uri instanceof RequestDispatcher){
        ((RequestDispatcher) uri).forward(request, response);
    }else{
        response.sendRedirect(request.getContextPath()+(String)uri);
    }
}
//定义参数
uri = request.getRequestDispatcher("/sys/foodtype/cuisineList.jsp");
uri = "/error/error.jsp";
//调用方法
goTo(request, response, uri);

6 servlet抽取出BaseServlet

抽取出BaseServlet优化servlet
BaseServlet继承HttpServlet,其他所有servlet继承BaseServlet继承HttpServlet
父类通过反射getDeclaredMethod方法调用子类方法,只要子类中不重写父类中方法,则调用父类中方法
注意,父类中首先实例化的service对象用protected修饰,private修饰需要对得到的参数method设置method.setAccessible(true);

7 分页bean与查询条件封装类Condition的实现

查询条件封装类Condition再次封装在PageBean中作为参数,在FoodServlet中封装参数,传递给FoodDao实现查询

8 sql语句的组装 FoodDao

sql语句格式化,参数list、条件append

9 工具类beanutils、dbutils的应用

BeanUtils:(FoodTypeDao类)BeanHandler、BeanListHandler

10 枚举类型的简单应用

定义TableStatus实体类(枚举),在DinnerTableDao中判断

11 前端路径问题

${pageContext.request.contextPath },写成相对路径

12 JSTL的简单应用

foodtype_list.jsp

13 过滤器(编码、浏览器类型)

web.xml中配置拦截条件filter-mapping和filter,一个特殊的servlet
EncodingFilter中需要区分GET和POST请求

14 多文件的上传(fileupload)

FoodServlet中update方法仅用来说明文件的上传

【其他未应用的知识点】

1 单例和非单例的判断

没有全局变量即可设为单例,防止线程安全问题,如FoodTypeDao可设为单例

2 监听器

3 JavaMail邮件

4 国际化

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
AI实战-信用卡申请风险识别数据集分析预测实例(含9个源代码+91.57 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:9个代码,共44.98 KB;数据大小:1个文件共91.57 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn wordcloud.WordCloud sklearn.model_selection.train_test_split sklearn.preprocessing.LabelEncoder sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.classification_report sklearn.metrics.confusion_matrix plotly.express plotly.subplots.make_subplots plotly.graph_objects plotly.io sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.preprocessing.StandardScaler sklearn.preprocessing.OrdinalEncoder sklearn.pipeline.make_pipeline sklearn.compose.make_column_transformer imblearn.over_sampling.RandomOverSampler sklearn.svm.SVC sklearn.tree.DecisionTreeClassifier sklearn.ensemble.HistGradientBoostingClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.neighbors.KNeighborsClassifier sklearn.model_selection.GridSearchCV sklearn.ensemble.VotingClassifier torch lightning torchmetrics.Accuracy torch.utils.data.Dataset torch.utils.data.DataLoader numpy warnings matplotlib wordcloud.STOPWORDS collections.Counter sklearn.ensemble.ExtraTreesClassifier sklearn.ensemble.AdaBoostClassifier sklearn.ensemble.BaggingClassifier xgboost.XGBClassifier lightgbm.LGBMClassifier catboost.CatBoostClassifier sklearn.linear_model.LogisticRegression sklearn.model_selection.RandomizedSearchCV sklearn.preprocessing.MinMaxScaler imblearn.over_sampling.SMOTE
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值