数据库之互联网常用分库分表方案
一、数据库瓶颈
1、IO瓶颈
2、CPU瓶颈
二、分库分表
1、水平分库
2、水平分表
3、垂直分库
4、垂直分表
三、分库分表工具
四、分库分表步骤
五、分库分表问题
1、非partition key的查询问题(水平分库分表,拆分策略为常用的hash法)
2、非partition key跨库跨表分页查询问题(水平分库分表,拆分策略为常用的hash法)
3、扩容问题(水平分库分表,拆分策略为常用的hash法)
六、分库分表总结
七、分库分表示例
一、数据库瓶颈↑
不管是IO瓶颈,还是CPU瓶颈,最终都会导致数据库克活跃连接数增加,进而逼近甚至达到数据库可承载活跃连接数的阈值。在业务Service来看就是,可用数据库连接少甚至无连接可用。接下来就可以想象了吧(并发量、吞吐量、崩溃)。
1、IO瓶颈
第一种:磁盘读IO瓶颈,热点数据太多,数据库缓存放不下,每次查询时会产生大量的IO,降低查询速度 -> 分库和垂直分表。
第二种:网络IO瓶颈,请求的数据太多,网络带宽不够 -> 分库。
2、CPU瓶颈
第一种:SQL问题,如SQL中包含join,group by,order by,非索引字段条件查询等,增加CPU运算的操作 -> SQL优化,建立合适的索引,在业务Service层进行业务计算。
第二种:单表数据量太大,查询时扫描的行太多,SQL效率低,CPU率先出现瓶颈 -> 水平分表。
二、分库分表↑
1、水平分库
- 概念:以 字段为依据 ,按照一定策略(hash、range等),将一个 库中的数据拆分到多个 库中。
- 结果:
- 每个 库的 结构都一样;
- 每个 库的 数据都不一样,没有交集;
- 所有 库的 并集是全量数据;
- 场景:系统绝对并发量上来了,分表难以根本上解决问题,并且还没有明显的业务归属来垂直分库。
- 分析:库多了,io和cpu的压力自然可以成倍缓解。
2、水平分表
- 概念:以 字段为依据 ,按照一定策略(hash、range等),将一个 表中的数据拆分到多个 表中。
- 结果:
- 每个 表的 结构都一样;
- 每个 表的 数据都不一样,没有交集;
- 所有 表的 并集是全量数据;
- 场景:系统绝对并发量并没有上来,只是单表的数据量太多,影响了SQL效率,加重了CPU负担,以至于成为瓶颈。
- 分析:表的数据量少了,单次SQL执行效率高,自然减轻了CPU的负担。
3、垂直分库
- 概念:以 以此为依据,按照业务归属不同,将不同的 表拆分到不同的 库中 。
- 结果:
- 每个 库克 结构都不一样;
- 每个 库的 数据也不一样,没有交集;
- 所有 库的 并集是全量数据;
- 场景:系统绝对并发量上来了,并且可以抽象出单独的业务模块。
- 分析:到这一步,基本上就可以服务化了。例如,随着业务的发展一些公用的配置表、字典表等越来越多,这时可以将这些表拆到单独的库中,甚至可以服务化。再有,随着业务的发展孵化出了一套业务模式,这时可以将相关的表拆到单独的库中,甚至可以服务化。
4、垂直分表
- 概念:以 字段为依据,按照字段的活跃性,将 表中字段拆到不同的 表(主表和扩展表)中。
- 结果:
- 每个 表的 结构都不一样;
- 每个 表的 数据也不一样,一般来说,每个表的 字段至少有一列交集,一般是主键,用于关联数据;
- 所有 表的 并集是全量数据;
- 场景:系统绝对并发量并没有上来,表的记录并不多,但是字段多,并且热点数据和非热点数据在一起,单行数据所需的存储空间较大。以至于数据库缓存的数据行减少,查询时会去读磁盘数据产生大量的随机读IO,产生IO瓶颈。
- 分析:可以用列表页和详情页来帮助理解。垂直分表的拆分原则是将热点数据(可能会冗余经常一起查询的数据)放在一起作为主表,非热点数据放在一起作为扩展表。这样更多的热点数据就能被缓存下来,进而减少了随机读IO。拆了之后,要想获得全部数据就需要关联两个表来取数据。但记住,千万别用join,因为join不仅会增加CPU负担并且会讲两个表耦合在一起(必须在一个数据库实例上)。关联数据,应该在业务Service层做文章,分别获取主表和扩展表数据然后用关联字段关联得到全部数据。
三、分库分表工具↑
- sharding-sphere:jar,前身是sharding-jdbc;
- TDDL:jar,Taobao Distribute Data Layer;
- Mycat:中间件。
注:工具的利弊,请自行调研,官网和社区优先。
四、分库分表步骤↑
根据容量(当前容量和增长量)评估分库或分表个数 -> 选key(均匀)-> 分表规则(hash或range等)-> 执行(一般双写)-> 扩容问题(尽量减少数据的移动)。
五、分库分表问题↑
1、非partition key的查询问题(水平分库分表,拆分策略为常用的hash法)
- 端上除了partition key只有一个非partition key作为条件查询映射法
基因法注:写入时,基因法生成user_id,如图。关于xbit基因,例如要分8张表,2 3=8,故x取3,即3bit基因。根据user_id查询时可直接取模路由到对应的分库或分表。根据user_name查询时,先通过user_name_code生成函数生成user_name_code再对其取模路由到对应的分库或分表。id生成常用 snowflake算法。 - 端上除了partition key不止一个非partition key作为条件查询映射法
冗余法注:按照order_id或buyer_id查询时路由到db_o_buyer库中,按照seller_id查询时路由到db_o_seller库中。感觉有点本末倒置!有其他好的办法吗?改变技术栈呢? - 后台除了partition key还有各种非partition key组合条件查询NoSQL法
冗余法
2、非partition key跨库跨表分页查询问题(水平分库分表,拆分策略为常用的hash法)
注:用 NoSQL法解决(ES等)。
3、扩容问题(水平分库分表,拆分策略为常用的hash法)
- 水平扩容库(升级从库法)注:扩容是成倍的。
- 水平扩容表(双写迁移法)
第一步:(同步双写)应用配置双写,部署;第二步:(同步双写)将老库中的老数据复制到新库中;第三步:(同步双写)以老库为准校对新库中的老数据;第四步:(同步双写)应用去掉双写,部署;
注: 双写是通用方案。
六、分库分表总结↑
- 分库分表,首先得知道瓶颈在哪里,然后才能合理地拆分(分库还是分表?水平还是垂直?分几个?)。且不可为了分库分表而拆分。
- 选key很重要,既要考虑到拆分均匀,也要考虑到非partition key的查询。
- 只要能满足需求,拆分规则越简单越好。
七、分库分表示例↑
示例GitHub地址:
https://github.com/littlecharacter4s/study-sharding
作者: 尜尜人物
三.分库分表
当一张表随着时间和业务的发展,库里表的数据量会越来越大。数据操作也随之会越来越大。一台物理机的资源有限,最终能承载的数据量、数据的处理能力都会受到限制。这时候就会使用分库分表来承接超大规模的表,单机放不下的那种。
区别于分区的是,分区一般都是放在单机里的,用的比较多的是时间范围分区,方便归档。只不过分库分表需要代码实现,分区则是 mysql内部实现。分库分表和分区并不冲突,可以结合使用。
3.1 实现
3.1.1 分库分表标准
- 存储占用100G+
- 数据增量