[Paper Reading] DeepLab v1 & v2

DeepLab V1:SEMANTIC IMAGE SEGMENTATION WITH DEEP CONVOLUTIONALNETS AND FULLY CONNECTED CRFS


Background:
        CNN的一个特性是invariance(不变性),这个特性使得它在high-level的计算机视觉任务比如classification中,取得很好的效果。但是在semantic segmentation任务中,这个特性反而是个障碍。毕竟语义分割是像素级别的分类,高度抽象的空间特征对如此low-level并不适用。
    所以,要用CNN来做分割,就需要考虑两个问题,一个是feature map的尺寸,以及空间不变性。


Solution:
    对于第一个问题,回忆一下之前的FCN,FCN通过反卷积层(现在反卷积层似乎有了更好的叫法,但是这里暂时沿用反卷积这个名字)将feature map还原到原图尺寸。
    可是feature map为什么会变小呢?因为stride的存在。于是DeepLab就考虑,我直接把stride改成1,feature map不就变大了吗。将stride改小,确实能得到更加dense的feature map这个是毋庸置疑的,可是却也带来了另外一个问题即receptive field(RF)的改变问题。receptive field是直接和stride挂钩的,即

RFi+1 = RFi + (kernel-1)*stride (i越小越bottom)

    按照公式,stride变小,要想保持receptive field不变,那么,就应该增大kernel size。于是就有了接下来的hole算法。

    (P.S.:理论上来说,在pooling layer和convolution layer改变stride都是可以的,以下图示以pooling layer为例,PPT做的图比较粗糙= =)

    一开始,pooling layer stride = 2,convolution layer kernel size = 2,convolution layer第一个点的receptive field是{1,2,3,4},size为4

    

    为了得到更加dense的feature map,将pooling layer stride改为1,如果这个时候保持convolution layer的kernel size不变的话,可以看到,虽然是更dense了,可是不再存在RF = {1,2,3,4}的点了。

    

    当采用hole算法,在kernel里面增加“hole”,kernel size变大,相当于卷积的时候跨过stride减小额外带来的像素,RF就保持不变了,当然如果调整hole的size还能得到比原来更大的RF。

    

    这个扩大后的卷积核直观上可以以通过对原卷积核填充0得到,不过在具体实现上填0会带来额外的计算量,所以实际上是通过im2col调整像素的位置实现的,这里不展开,有兴趣的可以看看caffe源码(hole算法已经集成在caffe里了,在caffe里叫dilation)
    于是,通过hole算法,我们就得到了一个8s的feature map,比起FCN的32s已经dense很多了


    对于第二个问题,图像输入CNN是一个被逐步抽象的过程,原来的位置信息会随着深度而减少甚至消失。Conditional Random Field (CRF,条件随机场)在传统图像处理上的应用有一个是做平滑。CRF简单来说,能做到的就是在决定一个位置的像素值时(在这个paper里是label),会考虑周围邻居的像素值(label),这样能抹除一些噪音。但是通过CNN得到的feature map在一定程度上已经足够平滑了,所以short range的CRF没什么意义。于是作者采用了fully connected CRF,这样考虑的就是全局的信息了。
    
    另外,CRF是后处理,是不参与训练的,在测试的时候对feature map做完CRF后,再双线性插值resize到原图尺寸,因为feature map是8s的,所以直接放大到原图是可以接受的。


DeepLab V2:DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

    v1之后,Liang-Chieh Chen很快又推出了DeepLab的v2版本。这里就简单讲讲改进的地方。

    Multi-scale对performance提升很大,而我们知道,receptive field,视野域(或者感受野),是指feature map上一个点能看到的原图的区域,那么如果有多个receptive field,是不是相当于一种Multi-scale?出于这个思路,v2版本在v1的基础上增加了一个多视野域。具体看图可以很直观的理解。

    



    rate也就是hole size

    这个结构作者称之为ASPP(atrous spatial pyramid pooling),基于洞的空间金字塔
    此外,DeepLab v2有两个基础网络结构,一个是基于vgg16,另外一个是基于resnet101的,目前性能是benchmark上的第一名。
  • 5
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 10
    评论
本课程适合具有一定深度学习基础,希望发展为深度学习之计算机视觉方向的算法工程师和研发人员的同学们。基于深度学习的计算机视觉是目前人工智能最活跃的领域,应用非常广泛,如人脸识别和无人驾驶的机器视觉等。该领域的发展日新月异,网络模型和算法层出不穷。如何快速入门并达到可以从事研发的高度对新手和级水平的学生而言面临不少的挑战。精心准备的本课程希望帮助大家尽快掌握基于深度学习的计算机视觉的基本原理、核心算法和当前的领先技术,从而有望成为深度学习之计算机视觉方向的算法工程师和研发人员。本课程系统全面地讲述基于深度学习的计算机视觉技术的原理并进行项目实践。课程涵盖计算机视觉的七大任务,包括图像分类、目标检测、图像分割(语义分割、实例分割、全景分割)、人脸识别、图像描述、图像检索、图像生成(利用生成对抗网络)。本课程注重原理和实践相结合,逐篇深入解读经典和前沿论文70余篇,图文并茂破译算法难点, 使用思维导图梳理技术要点。项目实践使用Keras框架(后端为Tensorflow),学员可快速上手。通过本课程的学习,学员可把握基于深度学习的计算机视觉的技术发展脉络,掌握相关技术原理和算法,有助于开展该领域的研究与开发实战工作。另外,深度学习之计算机视觉方向的知识结构及学习建议请参见本人CSDN博客。本课程提供课程资料的课件PPT(pdf格式)和项目实践代码,方便学员学习和复习。本课程分为上下两部分,其上部包含课程的前五章(课程介绍、深度学习基础、图像分类、目标检测、图像分割),下部包含课程的后四章(人脸识别、图像描述、图像检索、图像生成)。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值