问题描述
从万能词典来的聪明的海狸已经使我们惊讶了一次。他开发了一种新的计算器,他将此命名为"Beaver’s Calculator 1.0"。它非常特别,并且被计划使用在各种各样的科学问题中。
为了测试它,聪明的海狸邀请了n位科学家,编号从1到n。第i位科学家给这个计算器带来了 ki个计算题。第i个科学家带来的问题编号1到n,并且它们必须按照编号一个一个计算,因为对于每个问题的计算都必须依赖前一个问题的计算结果。
每个教授的每个问题都用一个数 ai, j 来描述,i(1≤i≤n)是科学家的编号,j(1≤j≤ ki )是问题的编号, ai, j 表示解决这个问题所需资源单位的数量。
这个计算器非常不凡。它一个接一个的解决问题。在一个问题解决后,并且在下一个问题被计算前,计算器分配或解放资源。
计算器中最昂贵的操作是解放资源,解放远远慢于分配。所以对计算器而言,每一个接下来的问题所需的资源不少于前一个,是非常重要的。
给你关于这些科学家所给问题的相关信息。你需要给这些问题安排一个顺序,使得“坏对”尽可能少。
所谓“坏对”,就是相邻两个问题中,后一个问题需求的资源比前一个问题少。别忘了,对于同一个科学家给出的问题,计算它们的相对顺序必须是固定的。
输入格式
第一行包含一个整数n,表示科学家的人数。接下来n行每行有5个整数,ki, ai, xi, yi, mi (0 ≤ ai, 1 < mi ≤ 109, 1 ≤ xi, yi ≤ 109) ,分别表示第i个科学家的问题个数,第1个问题所需资源单位数,以及3个用来计算 ai, j 的参量。ai, j = (ai, j - 1 * xi + yi)mod mi。
输出格式
第一行输出一个整数,表示最优顺序下最少的“坏对”个数。
如果问题的总个数不超过200000,接下来输出 行,表示解决问题的最优顺序。每一行两个用空格隔开的整数,表示这个问题所需的资源单位数和提供这个问题的科学家的编号。
样例输入
2
2 1 1 1 10
2 3 1 1 10
样例输出
0
1 1
2 1
3 2
4 2
数据规模和约定
20%的数据 n = 2, 1 ≤ ki ≤ 2000;
另外30%的数据 n = 2, 1 ≤ ki ≤ 200000;
剩下50%的数据 1 ≤ n ≤ 5000, 1 ≤ ki ≤ 5000。
解题思路
由于顺序不可逆,每个科学家的最小“坏对”是确定的,将所有科学家的“坏对”记为 t,找出所有科学家中坏对最多的一个科学家,坏对最多的科学家的坏对数max就为最优值。 我们可以将“坏对”较少的科学家的问题往最多的科学家的问题中插入即可。
证明:
n个坏对就意味着可以把一个科学家所有的问题分成n+1个有序序列。
例如:3 4 5 2 6 8 7 坏对数为2,那么可分为 (3 4 5)(2 6 8)(7)三个有序序列, 即三块,块号为 0 1 2;
5 6 3 5 8 7 2 坏对数为3, 那么可分为 (5 6)(3 5 8)(7)(2)四个有序序列 ,即4块,块号为0 1 2 3;
我们同样可以把其余科学家的问题分为相应块数,那么我们把每个科学家对应相同块号的有序序列进行合并(不能改变每个科学家问题的顺序)。
因为本来每个序列就都是有序的,所有合并后的有序序列没有坏对,那么全部合并后,坏对数就为max。
以上面数据为例进行合并(3 4 5 5 6)(2 3 5 6 8 8)(7 7)(2 ) 坏对数为3。
因为每个科学家的问题顺序不能改变,那么最优值一定大于等于max,所以max一定为最优解
注意: long long
代码实现
#include<iostream>
#include<algorithm>
#include<math>
using namespace std;
struct pro{ // 问题
int t; // 坏对的数量
int value; // 资源
int sci; // 科学家
bool operator <(const pro &A)const{ // 关键的比较
if(t==A.t){
return value<A.value||(value==A.value&&sci<A.sci);
}
return t<A.t;
}
}p[200001];
int main()
{
long long int n,k,a,b,x,y,m;
int cnt=0,num=-1;
cin>>n;
for(int i=1;i<=n;i++){ // n个科学家
int t=0; // 编号
cin>>k>>a>>x>>y>>m;
for(int j=1;j<=k;j++){ // k个问题
if(cnt<=2e5)p[cnt++]=(pro){t,a,i}; // cnt记录总的问题个数
b=(x*a+y)%m; // 求得下一次资源
if(b<a&&j!=k) t++; // 记录坏对的数量
a=b;
}
num=max(num,t); // num为坏对的数量
}
cout<<num<<endl;
if(cnt<=2e5){
sort(p,p+cnt); // 对所有问题进行排序
for(int i=0;i<cnt;i++){
cout<<p[i].value<<" "<<p[i].sci<<endl;
}
}
return 0;
}