蓝桥杯 移动距离



移动距离


X星球居民小区的楼房全是一样的,并且按矩阵样式排列。其楼房的编号为1,2,3...
当排满一行时,从下一行相邻的楼往反方向排号。
比如:当小区排号宽度为6时,开始情形如下:


1  2  3  4  5  6
12 11 10 9  8  7
13 14 15 .....


我们的问题是:已知了两个楼号m和n,需要求出它们之间的最短移动距离(不能斜线方向移动)


输入为3个整数w m n,空格分开,都在1到10000范围内
w为排号宽度,m,n为待计算的楼号。
要求输出一个整数,表示m n 两楼间最短移动距离。


例如:
用户输入:
6 8 2
则,程序应该输出:
4

再例如:
用户输入:
4 7 20
则,程序应该输出:
5


资源约定:
峰值内存消耗 < 256M
CPU消耗  < 1000ms




请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。


所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。


注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include <xxx>, 不能通过工程设置而省略常用头文件。


提交时,注意选择所期望的编译器类型。



这道题目主要是每一个编号坐标的计算,我们主要是根据宽度
计算出标号的坐标(x1,y2),(x2,y2),然后进行相减并相加就行了
dis=abs(x1-x2)+abs(y1-y2); 


#include<cstdio>
#include<cmath>
int x[3],y[3],w;
void even_XY(int n,int i)//n为偶数 
{
	x[i]=n/w;
	if(n%w==0)
		y[i]=1; 
	else
	{
		x[i]++;
		y[i]=n%w; 
	} 
} 
void odd_XY(int n,int i)//n为奇数 
{
	x[i]=n/w;
	if(n%w==0)
		y[i]=w; 
	else
	{
		x[i]++;
		y[i]=w+1-n%w; 
	} 
} 

int main()
{
	int m,n,i=0;
	scanf("%d%d%d",&w,&m,&n);
	if((m/w)&1)
		odd_XY(m,i); 
	else
		even_XY(m,i);
	++i;
	if((n/w)&1)
		odd_XY(n,i);
	else
		even_XY(n,i);
	int sum=abs(x[0]-x[1])+abs(y[0]-y[1]);
	printf("%d %d %d %d %d\n",x[0],y[0],x[1],y[1],sum); 
	return 0;
} 



### 问题分析 蓝桥杯中的“移动距离”问题通常要求计算在一个网格中,从一个点移动到另一个点所需的最小步数。这种问题常使用**曼哈顿距离(Manhattan Distance)**来解决,它表示在标准坐标系中,两个点之间的城市街区距离。 曼哈顿距离的数学公式为: ``` d = |x1 - x2| + |y1 - y2| ``` 其中 `(x1, y1)` 和 `(x2, y2)` 是两个点的坐标。 ### C语言实现思路 1. **输入数据处理**:读取输入的行数、列数以及两个点的位置。 2. **坐标转换**:将给定的位置转换为二维数组中的行列坐标。 3. **计算曼哈顿距离**:根据上述公式计算两点之间的距离。 4. **输出结果**:打印最终的距离值。 ### 示例代码 ```c #include <stdio.h> #include <stdlib.h> int main() { int rows, cols; int pos1, pos2; // 输入行数、列数和两个位置 scanf("%d %d %d %d", &rows, &cols, &pos1, &pos2); // 计算每个位置的行和列 int row1 = (pos1 - 1) / cols; int col1 = (pos1 - 1) % cols; int row2 = (pos2 - 1) / cols; int col2 = (pos2 - 1) % cols; // 计算曼哈顿距离 int distance = abs(row1 - row2) + abs(col1 - col2); // 输出结果 printf("%d\n", distance); return 0; } ``` ### 代码说明 - `rows` 和 `cols` 表示网格的行数和列数。 - `pos1` 和 `pos2` 是两个点在网格中的一维编号。 - 使用 `(pos - 1) / cols` 获取该点在二维网格中的行号。 - 使用 `(pos - 1) % cols` 获取该点在二维网格中的列号。 - 最后通过 `abs()` 函数计算曼哈顿距离并输出结果[^3]。 ### 注意事项 - 确保输入格式正确,并且不要遗漏头文件 `<stdlib.h>`,因为 `abs()` 函数定义在此头文件中。 - 所有变量应使用合适的整型类型,例如 `int`。 - 保证程序返回 `0`,以符合竞赛评分系统的要求[^4]。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值