有向图强连通判断
在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected)。
如果有向图G的每两个顶点都强连通,称G是一个强连通图。
非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components)。
走个形式,先抛个定义出来,不需要死记定义,给个图能判断出是否为强连通图即可。
有向图强连通判断比无向图复杂些,无向图只需任意找个定点开始DFS或BFS,再遍历一次visit[]数组,存在没被遍历的点,即代表不是强连通。
而有向图因存在方向,例如A->B,而B->A要通过B->C->A甚至更远的路径再能找到A。
本算法比较“鸹貔”,算法复杂度为O(V*(V+E))。算法思想很简单,调用DFS搜索V(顶点的个数)次,判断是否可达即可。
直接甩算法:
#include <iostream>
#include <malloc.h>
using namespace std;
#define VRType int
#define VertexType int
#define MAX_VERTEX_NUM 30
typedef struct ArcNode{
int adjvex;
VRType info;
struct ArcNode *nextarc;
}ArcNode;
typedef struct VNode{
VertexType data;
struct ArcNode *firstarc;
}AdjList[MAX_VERTEX_NUM];
typedef struct{
AdjList vertices[MAX_VERTEX_NUM];
int vexnum, arcnum;
}ALGraph;
void CreatALGraph(ALGraph *&G)
{
int a, b, i;
ArcNode *arc;
G = (ALGraph *) malloc (sizeof(ALGraph));
cin>>G->vexnum>>G->arcnum;
for(i = 0; i< G->vexnum; i++){
G->vertices[i]->data = i;
G->vertices[i]->firstarc = NULL;
}
for(i = 1; i<= G->arcnum; i++){
cin>>a>>b;
arc = (ArcNode *) malloc (sizeof(ArcNode));
arc->nextarc = NULL;
arc->adjvex = b;
arc->nextarc = G->vertices[a]->firstarc;
G->vertices[a]->firstarc = arc;
}
}
int visit[MAX_VERTEX_NUM] = {0};
void DFS(ALGraph *G, VertexType u, VertexType v, int &flag)
{
ArcNode *arc;
if(u == v){
flag = 1;
return;
}
for(int i = 0; i< G->vexnum; i++)
if(G->vertices[i]->data == u)
break;
int k = i;
visit[k] = 1;
arc = G->vertices[k]->firstarc;
while(arc){
if(!visit[arc->adjvex])
DFS(G, arc->adjvex, v, flag);
arc = arc->nextarc;
}
}
void Judge(ALGraph *G, int &flag)
{
for(int i = 0; i< G->vexnum; i++)
for(int j = 0; j< G->vexnum; j++){
flag = 0;
DFS(G, i, j, flag);
if(!flag) return;
for(int k = 0; k< G->vexnum; k++)
visit[k] = 0;
}
}
int main()
{
int flag;
ALGraph *g;
CreatALGraph(g);
Judge(g, flag);
if(flag)
cout<<"yes";
else cout<<"no";
return 0;
}
过阵子附上Tarjan算法和Kosaraju算法,这两种算法的不需要遍历那么多次,复杂度仅有O(V+E)。