算法打卡 Day41(动态规划)-理论基础 + 斐波那契数 + 爬楼梯 + 使用最小花费爬楼梯

理论基础

动态规划,简称 DP,其中的每一个状态一定是由上一个状态推导出来的,而贪心算法没有状态推导,只是从局部直接选最优。

动态规划的五步:

  1. 确定 dp 数组以及下标的含义
  2. 确定递推公式
  3. dp 数组如何初始化
  4. 确定遍历顺序
  5. 举例推导 dp 数组

Leetcode 509-斐波那契数

题目描述

https://leetcode.cn/problems/fibonacci-number/description/

在这里插入图片描述

解题思路

class Solution {
public:
    int fib(int n) {
        vector<int> dp(n+1);
        dp[0] = 0;
        if (n > 0) dp[1] = 1;
        for (int i = 2; i <=n; i++){
            dp[i] = dp[i-1] + dp[i-2];
        }
        return dp[n];
    }
};

注意考虑 n=0 的情况,如果不加限制条件直接写 dp[1] = 1 会报错因为数组越界

Leetcode 70-爬楼梯

题目描述

https://leetcode.cn/problems/climbing-stairs/description/

在这里插入图片描述

解题思路

class Solution {
public:
    int climbStairs(int n) {
        vector<int> dp(n);
        dp[0] = 1;
        if (n>1) dp[1] = 2;
        for (int i = 2; i <n;i++){
            dp[i] = dp[i-1] + dp[i-2];
        }
        return dp[n-1];
    }
};

Leetcode 746-用最小花费爬楼梯

题目描述

https://leetcode.cn/problems/min-cost-climbing-stairs/description/

在这里插入图片描述

解题思路

本题的解题思路继承爬楼梯,在此基础上还需要考虑爬楼梯的费用

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        vector<int> dp(cost.size());//dp保存的是到当前楼梯的最低花费
        int n = cost.size();
        dp[0] = 0;
        dp[1] = 0;
        for (int i =2; i < n;i++){
            dp[i] = min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
        }
        int minExpense = min(dp[n-1]+cost[n-1],dp[n-2]+cost[n-2]);
        return minExpense;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值