1.java heap space异常
如果仅设置
set mapred.map.child.java.opts=-Xmx2048m;
(默认值:mapred.map.child.java.opts=-Djava.net.preferIPv4Stack=true -Xmx1610612736)
set mapred.reduce.child.java.opts=-Xmx2048m;
(默认值:mapred.reduce.child.java.opts=-Djava.net.preferIPv4Stack=true -Xmx1610612736)
不成功,继续设置
set mapreduce.map.memory.mb=6144;
(默认值:mapreduce.map.memory.mb=2048)
set mapreduce.reduce.memory.mb=3072;
(默认值:mapreduce.reduce.memory.mb=2048)
以上参数的值可以根据数据量具体设置。
2.inner join不走分区扫描全表
在使用inner join的时候,会发现相同的代码只是把inner join换成left join,inner join开启的map数较多,因为inner join的时候where条件里面设置的时间周期不起作用,计算的时候会a表和b表全表扫描进行join。
(1)简单的提数可以把时间周期设置在join的条件里面。
(2)正式上线的代码可以先进行一下某个时间周期数据的预先,然后再进行join。
3.union 较多的时候,提高效

本文介绍了Hive调优的一些关键点,包括解决java heap space异常,优化inner join操作,提升union效率,切换到Spark执行引擎以及设置小文件合并等策略,旨在提高Hive查询性能和减轻元数据库压力。
最低0.47元/天 解锁文章
1057

被折叠的 条评论
为什么被折叠?



