目录
1. Introduction
In recommendation systems, two types of users’ private information are leaked in traditional MF(Matrix Factorization) :
(i) users’ raw preference data
(ii)users’ learned latent feature vectors
Prior studies have studied privacy-preserving MF in two main types:
(1) Obfuscation-based methods:obfuscate users’ preference raw data before releasing it to the central server so as to ensure certain level of privacy protection (e.g., differential privacy)
(2) Encryption-based methods:use advanced encryption schemes such as homomorphic encryption for implementing privacy-preserving MF
2.Preliminaries
Horizontal Federated Learning
- Horizontal federated learning is introduced in the scenarios when the data from different contributors share the same feature space but vary in samples.
Additively Homomorphic Encryption


3.User-level Distributed Matrix Factorization
M ∈ [n] × [m] as user-item rating pairs which a rating has been generated, M = |M| as the total number of ratings and ri,j represents the rating generated by user i for item j
Matrix factorization formulates this problem as fitting a bi-linear model on the existing ratings. The computing process of U and V can

FedMF是一种隐私保护的矩阵分解方法,用于推荐系统,防止用户偏好数据和潜在特征向量泄露。通过使用加性同态加密,FedMF在用户级别分布式地执行矩阵分解,确保在诚实但好奇的服务器上进行安全的协同过滤。实验证明,FedMF能够保护用户隐私,同时在小规模物品集上保持可接受的计算效率。
最低0.47元/天 解锁文章
1774

被折叠的 条评论
为什么被折叠?



