《统计学》笔记:第5章 概率与概率分布

随机事件 / 偶然事件 random event

在同一组条件下,每次试验可能出现也可能不出现的事件。

必然事件 certain event

在同一组条件下,每次试验一定出现的事件。

不可能事件 impossible event

在同一组条件下,每次试验一定不出现的事件。

基本事件 elementary event

如果一个事件不能分解成两个或更多个事件,则这个事件称为基本事件或简单事件。

概率 probability

事件A的概率是描述事件A在试验中出现的可能性大小的一种度量,记事件A出现可能性大小的数值为P(A),P(A)称为事件A的概率。

条件概率 conditional probability

当某一事件B已经发生时,事件A发生的概率,称这种概率为事件B发生条件下事件A发生的条件概率,记为P(A|B)。

独立性 independence

两个事件中无论哪一个事件发生并不影响另一个事件发生的概率,则称这两个事件相互独立。

概率函数 probability function

在同一组条件下,如果每次试验可能出现这样活那样的结果,并且把所有的结果都能列举出来,即把X的所有可能值x1,x2,…,xn都能列举出来,并且X的可能值x1,x2,…,xn具有确定概率P(x1),P(x2),…,P(xn),其中P(xi)=P(X=xi),称为概率函数,则X称为P(X)的随机变量,P(X)称为随机变量X的概率函数。

随机变量 random variable

离散型 discrete

如果随机变量X的所有取值都可以逐个列举出来,则称X为离散型随机变量。

连续型 continuous

如果随机变量X的所有取值无法逐个列举出来,而是取数轴上某一区间内的任一点,则称X为连续型随机变量。

概率分布 probability distribution

设有一离散型随机变量X,可能取值x1,x2,…,xn,其相应的概率为p1,p2

,…,pn,即P(x=xi)=pi(i=1,2,…,n)。将X=xi和P(X=xi)=pi列为两行,一一对应,则称列成的表格形式为离散型随机变量X的概率分布,其中,P(X=xi)=pi是X的概率函数。

期望值 expected value

离散型随机变量X的期望值定义为,在离散型随机变量X的一切可能值的完备组中,各可能值xi与其对应概率pi的乘积之和称为该随机变量X的期望值,记作E(X)或μ。

二项分布 binomial distribution

实际问题中,有许多试验与掷硬币的试验有共同的性质,它们只包含两个结果。这种随机变量所服从的概率分布通常称为二项分布。

贝努利试验 Bernoulli traials

具有如下特征的n次重复独立试验为n重贝努利试验【批:也称伯努利试验】,简称贝努利试验或贝努利试验模型:

  • 包含了n个相同的试验
  • 每次试验只有两个可能的结果
  • 出现任一可能的概率对每一次试验是相同的
  • 试验是相互独立的
  • 试验的结果可以计数,即实验结果对应于一个离散型随机变量

概率密度函数 probability density function

当用函数f(x)来表示连续型随机变量时,我们将f(x)称为概率密度函数。概率密度函数应满足下述两个条件:
(1)f(x)0 (1)f(x)\geq0

(2)+f(x)dx=1 (2)\int^{+∞}_{-∞}{f(x)dx}=1

f(x)f(x)并不是一个概率,即f(x)P(X=x)f(x)\neq{P(X=x)}f(x)f(x)称为概率密度函数。

正态分布 normal distribution

在连续型随机变量中,最重要的一种随机变量是具有钟形概率分布的随机变量;人们称它为正态随机变量,相应的概率分布称为正态分布。

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 游动-白 设计师: 上身试试
应支付0元
点击重新获取
扫码支付

支付成功即可阅读