自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(261)
  • 资源 (2)
  • 收藏
  • 关注

转载 Anaconda虚拟环境使用及包管理

列出所有已有虚拟环境conda env listconda info -e 创建新的虚拟环境conda create -n env_name python=version 激活并进入虚拟环境conda activate env_name 删除一个已有的虚拟环境(以下两条指令均可)conda env remove -n env_nameconda remove –name env_name –all 分享代码的时候,同时也需要将运行环境分享给大家conda env export > env.ya

2020-12-16 18:12:57 459

原创 ubuntu18安装cuda&cudnn

(1)先下载对应的cuda10.2版本,之后wget http://developer.download.nvidia.com/compute/cuda/10.2/Prod/local_installers/cuda_10.2.89_440.33.01_linux.runsudo sh cuda_10.2.89_440.33.01_linux.run选要注意的是,第一条下载命令在ubuntu上经常下载到一半失败,所以我都是在win10下用迅雷下载好再拷到ubuntu上的安装过程经过一串

2020-12-16 16:17:58 455

原创 keras输出中间层结果,某一层的权重、偏置

参考链接:https://blog.csdn.net/hahajinbu/article/details/77982721#获得某一层的权重和偏置weight_Dense_1,bias_Dense_1 = model.get_layer('Dense_1').get_weights()print(weight_Dense_1.shape)print(bias_Dense_1.shape)

2020-12-14 15:52:09 1378

原创 pytorch——冻结某层参数

参考链接:https://blog.csdn.net/qq_41368074/article/details/107860126https://blog.csdn.net/Code_Mart/article/details/88254444首先,我们知道,深度学习网络中的参数是通过计算梯度,在反向传播进行更新的,从而能得到一个优秀的参数,但是有的时候,我们想固定其中的某些层的参数不参与反向传播。比如说,进行微调时,我们想固定已经加载预训练模型的参数部分,指向更新最后一层的分类器,这时应该怎么做呢

2020-12-11 11:36:05 6599 3

原创 windos下keras可视化——graphviz&pydot_ng

1.安装pydot_ng,graphvizpip installpydot_ngpip install graphviz2.计算机安装graphviz下载链接:https://graphviz.gitlab.io/download/并添加路径到环境变量,安装过程中有提示,或者自己添加"D:\Program Files\Graphviz 2.44.1\bin"到PATH3.配置修改pydot_ng的__init__.py文件中path的路径为Graphvie的实际bin目...

2020-12-10 20:42:51 277

原创 Ubuntu离线安装Nvidia显卡驱动

https://blog.csdn.net/qq_41915226/article/details/103052058离线安装:去官网下载需要的显卡驱动,以NVIDIA-Linux-x86_64-440.31.run为例。下载后的run文件拷贝至home目录下。1.禁用 nouveau驱动lsmod | grep nouveau# 查看有没有输出,如果有信息输出,则需要禁掉sudo gedit /etc/modprobe.d/blacklist.conf在blacklist.con.

2020-12-10 09:05:16 9003

原创 WGAN-GP 算法和代码结合点

写这篇文章不是为了介绍WGAN-GP,而是为了把WGAN-GP和Code对应起来。因为最后还是要付诸于实践,而不仅仅就是介绍什么,因为关于WGAN-GP好的介绍已经很多了。一、WGAN-GP解决的问题WGAN中的weight clipping导致的参数集中化和调参上的梯度爆炸和梯度消失问题WGAN-GP解决 了问题将参数与限制联系起来达到真实的Lipschitz限制条件所以WGAN-GP的贡献是:提出了一种新的lipschitz连续性限制手法—梯度惩罚,解决了训练梯度消失梯度爆炸的问.

2020-12-07 10:06:37 1408

原创 WGAN-算法和代码结合点

写这篇文章不是为了介绍WGAN,而是为了把WGAN和Code对应起来。因为最后还是要付诸于实践,而不仅仅就是介绍什么,因为关于WGAN好的介绍已经很多了。一、WGAN比GAN的优越性Wasserstein GAN(下面简称WGAN)成功地做到了以下爆炸性的几点:彻底解决GAN训练不稳定的问题,不再需要小心平衡生成器和判别器的训练程度 基本解决了collapse mode的问题,确保了生成样本的多样性 训练过程中终于有一个像交叉熵、准确率这样的数值来指示训练的进程,这个数值越小代表GAN训.

2020-12-06 17:20:58 2814 3

原创 ACGAN-半监督式GAN

参考文献https://www.jianshu.com/p/aef29fe51c73D_real, C_real = Discriminator( real_imgs) # real_img 为输入的真实训练图片D_real_loss = torch.nn.BCELoss(D_real, Y_real) # Y_real为真实数据的标签,真数据都为-1,假数据都为+1C_real_loss = torch.nn.CrossEntropyLoss(C_re...

2020-12-01 15:51:50 582

原创 GAN的Loss的比较研究——传统GAN的Loss的理解

参考文献:https://blog.csdn.net/StreamRock/article/details/81096105https://www.cnblogs.com/kai-nutshell/p/12968454.html参考文献1中给出对于loss_D的解释,鄙人表示很不错,但是对于Loss_G的解释太过于笼统,没有给出具体的解释。本文将继续解释GAN里面有两个Loss:Loss_D(判别网络损失函数)、Loss_G(生成网络损失函数)。Loss_D只有两个分类,Real imag

2020-12-01 15:05:55 5536 1

原创 GAN的几种评价指标

https://blog.csdn.net/qq_35586657/article/details/98478508写的不错,可以用来评估GAN

2020-11-30 19:48:36 1270

原创 GAN及其相关模型训练细节总结

https://blog.csdn.net/qq_40128284/article/details/109445844https://cloud.tencent.com/developer/article/1430237https://www.sohu.com/a/272494057_473283https://www.cnblogs.com/wanghui-garcia/p/12781438.html

2020-11-30 16:00:40 352

原创 Pytorch中的train和eval用法注意点

参考链接:https://blog.csdn.net/sinat_36618660/article/details/100147506https://blog.csdn.net/u013289254/article/details/103621792(一)、model.train()和model.eval()分别在训练和测试,作用:(1). model.train()启用 BatchNormalization 和 Dropout,将BatchNormalization和Dropout置为Tru

2020-11-30 15:33:44 719

原创 Improve Sequence Generation of GAN

2020-11-26 20:35:01 182

原创 Feature Extraction

2020-11-26 19:57:23 516

原创 GAN:Tips for Improving GAN

GAN->WGAN

2020-11-26 12:13:25 223

原创 fGAN:General Framework of GAN

2020-11-26 09:47:55 248

原创 Theory behind GAN

G0和G1其实差的不是特别多,所以在update的时候,学习率应该小一点。但是D可以大一点

2020-11-25 14:50:18 204

原创 Unsupervised Conditional Generation

2020-11-25 09:06:56 156

原创 cGAN

conditional GAN

2020-11-24 19:36:47 179

原创 利普希茨连续(Lipschitz continuous)及其应用

参考链接:https://www.zhihu.com/question/51809602https://zhuanlan.zhihu.com/p/27554191https://blog.csdn.net/FrankieHello/article/details/105739610目录通俗解释定义​​直观解释通俗解释以陆地为例。岛屿:不连续一般陆地:连续丘陵:李普希兹连续悬崖:非李普希兹连续山包:可导平原:线性半岛:非凸想了半天用什么来表达亚连续(se.

2020-11-24 14:28:34 27332

原创 NAS-based on cell DARTS

很多人工设计的神经结构是由重复的结构单元组成的,例如:ResNet结构由多个残差单元组成,GoogLeNet结构由 Inception 结构单元组成。由此启发,NAS 算法通过搜索结构单元(cell)来替代搜索整个神经结构。NASNet提出了基于cell结构的搜索空间。在这种搜索空间中,NAS算法搜索2种类型的cell,一种为normal cell,另一种为reduction cell。normal cell的输出和输入尺寸保持一致,而reduction cell的输出尺寸是输入尺寸的一半。在搜索完 ce.

2020-11-20 10:41:01 1026

原创 multi-label多标签准确率的计算方法

sigmoid得到结果之后与正确答案进行点乘操作然后再叠加就是最后的加权准确率比如正确标签是[0 1 1 0], 预测结果是[0.1 0.8 0.6 0.2], 那么加权后的结果是[0 0.8 0.6 0],sum([0 0.8 0.6 0])>1,则为1,否则为0。因为只有每个标签都>0.5才算是正确。但是如果有一个类是单标签,那就会出现问题了。...

2020-11-18 17:10:15 2873

原创 RuntimeError:输入类型(torch.FloatTensor)和权重类型(torch.cuda.FloatTensor)应该相同(RuntimeError:输入类型(torch.FloatT

之所以会出现此错误,是因为您的模型位于GPU上,而数据位于CPU上。因此,您需要将输入张量发送到CUDA。输入,标签= inputs.cuda(),labels.cuda()#添加此行或者像这样,与其余代码保持一致:输入,标签= inputs.to(设备),labels.to(设备)在同样的错误,如果你的数据在CUDA,但你的模型是不是消息将弹出。在这种情况下,您需要将模型发送到CUDA。model= MyModel()if torch.cuda.is_available(

2020-11-18 15:54:55 1606

原创 Input type (torch.cuda.DoubleTensor) and weight type (torch.cuda.FloatTensor) should be the same

原因在于自己整理数据集的时候,使用了np.array,然后默认保存成float64,但是pytorch中默认是float32首先找到代码出错的位置,将该处的数据类型转为float类型:x = x.type(torch.FloatTensor)

2020-11-18 15:51:27 3651

转载 numpy的dtype,astype

综述:np类型的a如果直接修改如:a.dtype='int16',那么直接会修改a,会导致长度的不一致,如果要直接修改则要采用astype方法如:b=a.astype('int16'),a保持不变,b的长度等于a,并且type由a变成了int16,或者调用b=np.array(a,dtype='int16'),效果和astype一样。另外b=np.array(a,dtype=np.int16)中的np.int16是一样的float类型默认float64=float,int类型默认int64=int,

2020-11-18 15:47:10 2537 3

转载 Pytorch | Pytorch框架中模型和数据的gpu和cpu模式:model.to(device), model.cuda(), model.cpu(), DataParallel

参考:https://blog.csdn.net/iLOVEJohnny/article/details/106021547背景介绍我们在使用Pytorch训练时,模型和数据有可能加载在不同的设备上(gpu和cpu),在算梯度或者loss的时候,报错信息类似如下:RuntimeError: Function AddBackward0 returned an invalid gradient at index 1 - expected type torch.cuda.FloatTensor but

2020-11-18 14:01:45 3972

原创 pytorch中神经网络模型的初始化-保存-加载

https://blog.csdn.net/remanented/article/details/89161297一、打算开始训练自己的模型,希望能够得到较好的training_model,包括了对模型的初始化第一种from torch.nn import init#define the initial function to init the layer's parameters for the networkdef weigth_init(m): if isinstance(m

2020-11-18 11:01:21 1901 2

原创 Pytorch加载自己的数据集(使用DataLoader加载Dataset)

https://www.pytorchtutorial.com/pytorch-custom-dataset-examples/https://blog.csdn.net/l8947943/article/details/1037334731. 我们需要加载自己的数据集,使用Dataset和DataLoaderDataset:是被封装进DataLoader里,实现该方法封装自己的数据和标签。 DataLoader:被封装入DataLoader迭代器里,实现该方法达到数据的划分。2.Datas

2020-11-18 09:44:51 8817

原创 Ubuntu 18.04 安装显卡驱动

https://zhuanlan.zhihu.com/p/596189991. 使用 Ubuntu 软件仓库中的稳定版本安装1.1. 查看显卡硬件型号在终端输入:ubuntu-drivers devices,可以看到如下界面推荐安装的版本号是:nvidia-driver-455 - distro non-free recommended1.2. 开始安装如果同意安装推荐版本,那我们只需要终端输入:sudo ubuntu-drivers autoinstall就可以自动安装..

2020-11-14 17:57:16 737

原创 python各种路径文件的获取方法以及遍历文件目录

目录当前路径,父路径,父路径的父路径遍历文件目录os.walk当前路径,父路径,父路径的父路径#当前文件的路径pwd=os.getcwd()#当前文件的父路径father_path=os.path.abspath(os.path.dirname(pwd)+os.path.sep+".")#当前文件的前两级目录grader_father=os.path.abspath(os.path.dirname(pwd)+os.path.sep+"..")import...

2020-11-13 10:55:23 441

转载 ubuntu18.04 好用的下载工具 (uGet 与 axel )

uGet 安装sudo add-apt-repository ppa:plushuang-tw/uget-stablesudo add-apt-repository ppa:t-tujikawa/ppa# 这里是uGet的客户端sudo apt-get install uget # 这里是待会要用的下载方式sudo apt-get install aria2安装谷歌浏览器默认下载插件sudo add-apt-repository ppa:slgobinath/uget-chro

2020-10-29 09:56:22 899 1

转载 Ubuntu/linux下最强大的下载工具-aria2

目录介绍安装 aria2aria2 的使用方法介绍aria2 是 Linux 下一个不错的高速下载工具。由于它具有分段下载引擎,所以支持从多个地址或者从一个地址的多个连接来下载同一个文件。这样自然就大大加快了文件的下载速 度。aria2 也具有断点续传功能,这使你随时能够恢复已经中断的文件下载。除了支持一般的 http(s) 和 ftp 协议外,aria2 还支持 BitTorrent 协议。这意味着,你也可以使用 aria2 来下载 torrent 文件。安装 aria2ari

2020-10-29 09:52:45 4029

原创 网络加密流量的相关研究

目录简介方向关键词网络加密流量相关研究加密流量识别类型加密流量识别方法加密流量识别使用的数据集VPN-nonVPN dataset (ISCXVPN2016)Tor-nonTor dataset (ISCXTor2016)相关文献综述文献数据集的文献关于VPN数据集的参考文献关于Tor数据集的参考文献参考链接:https://mathpretty.com/11401.html简介这一篇会对网络加密流量检测的相关研究做一个综述. 将各个方面进行简

2020-10-28 19:28:35 5998 5

转载 网络攻防实战--ARP欺骗

目录一、实验环境(实验设备)二、实验原理及内容以及实验小结㈠ARP欺骗⑴利用arpspoof工具和driftnet工具的arp欺骗实验2.利用arpspoof工具和driftnet工具进行ARP欺骗(截获图片)一、实验环境(实验设备)硬件:微型计算机软件:kali linux下的arpspoof工具和driftnet工具二、实验原理及内容以及实验小结㈠ARP欺骗⑴利用arpspoof工具和driftnet工具的arp欺骗实验①实验原理 1...

2020-10-27 20:34:37 1099 1

原创 最全的CSE-CIC-IDS2018 下载

前言复现论文,CSE-CIC-IDS2018全部有452.8GiB,所幸有处理好的CSV文件,2018的合计有6GiB左右;四处找寻不到,CSDN会员资源下载下来里面是不对的内容,没办法自己去官网下载,过程不易,特总结一下方法,以及分享我下载的2018数据集。我采用的下载办法,是用windows系统下的下载【1】官网下载AWS工具或者用我下载下来的(,windows64位)【2】 在aws的安装文件夹中打开cmd命令窗口,运行:...

2020-10-15 16:55:21 4073 9

原创 PyTorch 的 Autograd学习

https://zhuanlan.zhihu.com/p/69294347https://zhuanlan.zhihu.com/p/67184419

2020-10-08 22:01:34 150

原创 如何区分并记住常见的几种 Normalization 算法

神经网络中有各种归一化算法:Batch Normalization (BN)、Layer Normalization (LN)、Instance Normalization (IN)、Group Normalization (GN)。从公式看它们都差不多,如 (1) 所示:无非是减去均值,除以标准差,再施以线性映射。Batch Normalization (BN)# coding=utf8import torchfrom torch import nn# track_r...

2020-10-07 14:42:40 1638

原创 running_mean和running_var的计算方式

参考链接:https://www.johndcook.com/blog/standard_deviation/https://www.zhihu.com/question/314505455/answer/1025527665两种计算方差的公式第一种:第二种 :均值的计算方法在线计算附上代码:class RunningStat { public: RunningStat() : m_n(0) {} ..

2020-10-07 11:03:12 1121

原创 MAML代码踩坑

本文是在自己电脑上学习MAML,使用CPU跑的数据首先已经进行了数据预处理,同时已经形成了.npy文件加载数据import torchimport numpy as npimport osroot_dir = 'D:\A_Datasets\omniglot\python'img_list = np.load(os.path.join(root_dir, 'omniglot.npy')) # (1623, 20, 1, 28, 28)x_train = img_list[:..

2020-10-06 22:30:57 3647 16

C++谭浩强中多态性和虚函数章节中最后的代码

多态性和虚函数章节中最后的代码! 多态性和虚函数章节中最后的代码! 多态性和虚函数章节中最后的代码! 多态性和虚函数章节中最后的代码!

2019-12-26

谭浩强教授的面向对象程序设计——第一章

谭浩强教授的面向对象程序设计——第一章, 同时我的代码对应的博客也可以关注哦 谭浩强教授的面向对象程序设计——第一章, 同时我的代码对应的博客也可以关注哦 谭浩强教授的面向对象程序设计——第一章, 同时我的代码对应的博客也可以关注哦 谭浩强教授的面向对象程序设计——第一章, 同时我的代码对应的博客也可以关注哦

2019-12-18

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除