分析晶体三极管频率特性的等效模型

本文详细介绍了晶体三极管的H模型与Π模型,包括H参数等效模型和π参数等效模型的构建,以及如何求解gm、rb’e、Cπ和β的频响。在高频分析中,晶体管的极间电容和受控电流源的影响不可忽视,通过等效模型可以更好地理解和设计电路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

晶体三极管的H模型与Π模型

  • BJT内部交流(动态)电阻电容示意图

在这里插入图片描述

  • 图中参数说明:
    • 由于管子内集电区跟发射区的掺杂浓度高,rc,re非常小,可忽略不计,这样e’与e点可近似相等,c’与c也可近似相等。
    • 基区体电阻rbb’
      • 图中b’点是为分析方便而虚拟的基区内的等效基极。不同类型的BJT,rbb’的值相差很大,器件手册中常给出,在几十到几百欧之间。
    • 电阻rb’e
      • 发射结正偏电阻re折算到基极回路的等效电阻,即 r b ′ e = ( 1 + β ) r e = ( 1 + β ) V T I E Q r_{b^{'}e}=(1+\beta)r_{e}=(1+\beta) \frac{V_{T}}{I_{EQ}} rbe=(1+β)re=(1+β)IEQVT
    • 电容Cb’e’
      • 发射结电容,由于BJT在放大区时发射结正偏,所以Cb’e主要是扩散电容,数值较大,对于小功率管,Cb’e在几十到几百皮法范围。
    • 集电结电阻rb’c
      • 在放大区内集电结处于反偏状态,因此rb’c的值很大,一般在100kΩ~10MΩ范围。
    • 电容Cb’c’
      • 主要是势垒电容,数值较小,在2~10pF范围内。
    • 受控电流源
      • 由于结电容影响,BJT中受控电流源不再受控于基极电流,因此不能βib表示。BJT工作在放大区,三个电极的电流实质上均受控于发射结上所加的电压,因此在高频小信号模型中,受控电流源该受vb’e控制的电流源。gm表明发射结电压对受控电流ic的控制能力,定义为: g m = ∂ i c ∂ v B ′ E ∣ V C E = Δ i c Δ v B ′ E ∣ V C E g_{m}=\frac{\partial i_{c} }{\partial v_{B'E}}\mid{_{V_{CE}}}=\frac{\Delta i_{c}}{\Delta v_{B'E}}\mid{_{V_{CE}}} gm=vBEicVCE=ΔvBEΔicVCE

H参数等效模型

  • 如下图,我们已知晶体管的H参数等效模型,注意rce相较于负载RL大,因此在进行H参数等效模型对交流态进行分析时,忽略不计。在H参数等效模型下,我们忽略的极间电容的影响,因此此模型适合中低频段的分析,无法分析高频。
    在这里插入图片描述

  • 由于rce相较于负载RL较大,我们分析时常常把rce等效为开路。
    在这里插入图片描述

π参数等效模型

  • 在此,对H参数等效模型进行分解,可得出如下的完整模型(接近物理模型,全频率段都适用):
    在这里插入图片描述

  • 现在,我们开始简化完整模型,去掉一些参数,rb’c 反偏电阻,锗管100kΩ,硅管500kΩ,较大,中可相当于断路,且rce如同H参数等效模型中一样,开路。 去掉rb‘c的模型图

  • 对Cμ进行戴维南等效,也称为Cμ的单向化等效,字面意思:从输入端看进去Cμ相当于等效电容Cμ’,从输出看进去相当于Cμ’’
    在这里插入图片描述

  • 求解Cμ’ I C μ ˙ = U b ′ e ˙ − U c e ˙ X C μ = U b ′ e ˙ − U c e ˙ 1 j w C μ \dot {I_{C_μ}}=\frac{\dot {U_{b'e}}-\dot {U_{ce}}}{X_{C_μ}}= \frac{\dot {U_{b'e}}-\dot {U_{ce}}}{\frac{1}{jwC_μ}} ICμ˙=XCμUbe˙Uce˙=jwCμ1Ube˙Uce˙ X C μ ′ = 1 j w C μ ′ = U b ′ e I C μ X_{C'_μ}=\frac{1}{jwC'_{μ}}=\frac{U_{b'e}}{I_{C_μ}} XCμ=jwCμ1=ICμUbe K ˙ = U c e ˙ U b ′ e ˙ \dot {K}=\frac{\dot{U_{ce}}}{\dot{U_{b'e}}} K˙=Ube˙Uce˙ 可得 C μ ′ = ( 1 − K ˙ ) C μ C'_{μ}=(1-\dot{K})C_{μ} Cμ=(1K˙)Cμ 可见,C’μ是变化的,且C’μ>Cμ,因为uce是负的,即k是负的。

  • 求解C’'μ

    • 推导公式
    • C’'μ的容抗非常大。
  • Cπ与C’μ叠加的电路图下: C ′ Π = C Π + C μ ′ C^{'}{}_{Π}=C_{Π}+C^{'}_{μ} CΠ=CΠ+Cμ
    在这里插入图片描述

  • 一般在数据手册中,我们可查到的参数有rbb’、Cob=Cμ、fT(特征频率),显然我们需要求解Cπ、gm、rb’e

求解gm、rb’e

  • 首先求解rb’e,前面已经给出了等式,设中低频段放大倍数为β0 r b ′ e = ( 1 + β 0 ) r e = ( 1 + β 0 ) U T I E Q r_{b^{'}e}=(1+\beta _{0})r_{e}=(1+\beta _{0}) \frac{U_{T}}{I_{EQ}} rbe=(1+β0)re=(1+β0)IEQUT
  • 利用H参数与Π参数模型在中低频段等效这一特性,我们可知: I C ˙ I B ˙ = g m U b ′ e ˙ U b ′ e / r b ′ e = g m r b ′ e = β 0 \frac{\dot{I_{C}}}{\dot{I_{B}}}=\frac{g_{m}\dot{U_{b'e}}}{U_{b'e}/r_{b'e}}=g_{m}r_{b'e}=\beta _{0} IB˙IC˙=Ube/rbegmUbe˙=gmrbe=β0 g m = β 0 r b ′ e = β 0 ( 1 + β 0 ) U T I E Q g_{m}=\frac{\beta _{0}}{r_{b'e}}=\frac{\beta _{0}}{(1+\beta _{0})\frac{U_{T}}{I_{EQ}}} gm=rbeβ0=(1+β0)IEQUTβ0

求解Cπ且β的频响

  • 定义: β ˙ = I C ˙ I B ˙ ∣ U C E \dot {\beta}=\frac{\dot{I_{C}}}{\dot{I_{B}}}\mid _{U_{CE}} β˙=IB˙IC˙UCE
  • 在高频等效电路模型中,CE之间无电压变化,可以理解为很大的C’'μ短路了:
    在这里插入图片描述
  • 可得: β ˙ = I C ˙ I B ˙ = g m U b ′ e ˙ U b ′ e ˙ r b ′ e + U b ′ e ˙ X C π ′ = g m ( 1 r b ′ e + j w C π ′ ) = g m r b ′ e 1 + j w r b ′ e C π ′ = β 0 1 + j w r b ′ e C π ′ \dot {\beta}=\frac{\dot{I_{C}}}{\dot{I_{B}}}=\frac{g_{m}\dot{U_{b'e}}}{\frac{\dot{U_{b'e}}}{r_{b'e}}+\frac{\dot{U_{b'e}}}{X_{C^{'}_{π}}}}=\frac{g_{m}}{(\frac{1}{r_{b'e}}+jwC^{'}_{π})}=\frac{g_{m}r_{b'e}}{1+jwr_{b'e}C^{'}_{π}}=\frac{\beta _{0}}{1+jwr_{b'e}C^{'}_{π}} β˙=IB˙IC˙=rbeUbe˙+XCπUbe˙gmUbe˙=(rbe1+jwCπ)gm=1+jwrbeCπgmrbe=1+jwrbeCπβ0
  • 显然这是一个低通滤波器的等式,令 f β = 1 2 π r b ′ e C π ′ f_{\beta }=\frac{1}{2πr_{b'e}C^{'}_{π}} fβ=2πrbeCπ1 原式等于: β ˙ = β 0 1 + j ( f f β ) \dot{\beta}=\frac{\beta _{0}}{1+j(\frac{f}{f_{\beta}})} β˙=1+j(fβf)β0
  • 波特图
    在这里插入图片描述
  • 当f=fT时,|β|=1,可得 f T f β ≈ β 0 \frac{f_{T}}{f_{\beta}}\approx \beta _{0} fβfTβ0 f β = f T β 0 = 1 2 π r b ′ e C π ′ f_{\beta}=\frac{f_{T}}{\beta _{0}}=\frac{1}{2πr_{b'e}C^{'}_{π}} fβ=β0fT=2πrbeCπ1 C π ′ = β 0 2 π r b ′ e f T C^{'}_{π}=\frac{\beta _{0}}{2πr_{b'e}f_{T}} Cπ=2πrbefTβ0
  • 前面已知: C ′ π = C π + C μ ′ C^{'}{}_{π}=C_{π}+C^{'}_{μ} Cπ=Cπ+Cμ C μ ′ = ( 1 − K ˙ ) C μ C'_{μ}=(1-\dot{K})C_{μ} Cμ=(1K˙)Cμ K ˙ = U c e ˙ U b ′ e ˙ \dot {K}=\frac{\dot{U_{ce}}}{\dot{U_{b'e}}} K˙=Ube˙Uce˙ 此时 U b ′ e ˙ = 0 ( 短 路 ) \dot{U_{b'e}}=0(短路) Ube˙=0()因此 C ′ π = C π + C μ C^{'}{}_{π}=C_{π}+C_{μ} Cπ=Cπ+Cμ
  • C’π已知(上式求解),Cμ已知(手册给出),即可求出Cπ
### 三极管交直流等效电路模型分析 #### 三极管直流等效电路模型 对于BJT(双极结型晶体管),在进行直流分析时,主要关注静态工作点Q点的确立。这涉及到确定集电极电流\(I_C\)、基极电压\(V_{BE}\)以及发射极电压\(V_E\)等参数[^1]。 当考虑直流条件时,电容器由于其隔直作用,在此条件下可被视作开路处理。这意味着任何耦合或旁路电容都将不会影响到直流偏置路径上的电流流动和节点电压分布。为了简化计算过程并获得更直观的理解,通常会构建一个专门用于描述这种稳态特性的直流等效电路模型。在这个过程中,电源也被理想化为恒定不变的理想电压源来提供必要的偏压给各个终端元件[^3]。 #### 三极管交流等效电路模型 而在交流状态下,则需引入小信号模型来进行精确建模。此时假设输入的小幅度变化量叠加于已经建立好的稳定DC操作点之上,并忽略掉所有与之无关的大规模变动因素。具体来说: - **h参数模型**:这是一种常用的方法之一,通过定义一组特定的增益系数(hfe, hoe...)来表征器件内部关系;其中最重要的是跨导gm=ΔIC/ΔVBE|IB常数 和 输出阻抗r0=-ΔVCB/ΔIC|VCE常数 。这些参数能够很好地反映出实际物理性质下NPN/PNP结构的行为特征[^2]。 - 动态情况下,电容表现为低频至高频范围内的短路线,从而允许AC成分顺利传递而不受阻碍。同时,考虑到功率供给部分对于瞬变响应的影响较小,故而可以直接将其接地处理以便进一步简化网络拓扑结构。 综上所述,针对不同应用场景需求分别建立了两种类型的近似表示形式——即适用于求解静态性能指标的直流等效图示法和平价动态特性表现的小信号理论框架下的交流等效图形表达方式。 ```python # Python代码仅作为示意用途展示如何创建简单的BJT小信号模型类 class BJT_SmallSignalModel: def __init__(self, gm, r_pi, ro): self.gm = gm # 跨导 self.r_pi = r_pi # 输入电阻 self.ro = ro # 输出电阻 def calculate_voltage_gain(self, R_L): """ 计算共射放大器的电压增益 """ A_v = -(self.gm * (R_L || self.ro)) return A_v def parallel_resistance(R1, R2): """ 并联电阻计算函数""" return 1 / ((1/R1)+(1/R2)) # 创建实例对象 bjt_model = BJT_SmallSignalModel(gm=4e-3, r_pi=8e3, ro=50e3) # 使用该模型估算某负载情况下的电压增益 print(f"Voltage Gain with a load of 2kΩ is approximately {bjt_model.calculate_voltage_gain(2e3)}") ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值