Numpy学习

本文详细介绍了Numpy库的基础知识,包括如何生成数组、查看和修改数组形状、数组运算、索引和切片。还探讨了Numpy的特殊值如nan和inf的处理,以及常用函数和数据读取、随机数生成等核心概念。
摘要由CSDN通过智能技术生成

numpy的初步了解

1.使用numpy生成数组,得到ndarray的类型

t1 = np.array([1,2,3])
print(t1)
print(type(t1))  #<class 'numpy.ndarray'>

2. np.arange(x)方法的效果和np.array(range(x))的效果一样

t2 = np.array(range(10))
print(t2)
print(type(t2))

t3 = np.arange(10)
print(t3)
print(type(t3))

3.使用dtype可以得到数据类型

t4 = np.arange(4,10,2)
print(t4)
print(type(t4))

print(t4.dtype)

4.numpy中的数据类型


t5 = np.array(range(1,4),dtype=float)
# 或t5 = np.array(range(1,4),dtype="float")
# 或t5 = np.array(range(1,4),dtype="float32")
print(t5)
print(t5.dtype)

# numpy中的bool数据类型
t6 = np.array([0,1,1,0,1,0,0],dtype="bool")
print(t6)
print(t6.dtype)
print("//")

# 调整数据类型
t7 = t5.astype("int8")
print(t5.dtype)
print(t7.dtype)
print("***************************")
t5.dtype = "int8"
print(t5.dtype)

# numpy中的小数
t7 = np.array([random.random() for i in range(10)])
print(t7)
print(t7.dtype)

# 修改浮点型小数位数
t8 = np.round(t7,2) #保留两位小数
print(t8)

数组的形状和运算

  1. a.shape查看数组形状
import numpy as np
t1 = np.arange(12)
print(t1)#t1:{ndarray:(12,)}
print(t1.shape)#输出结果:(12,)

t2 = np.array([[1,2,3],[4,5,6]])
print(t2)#t2:{ndarray:(2,3)}
print(t2.shape)#输出结果:(2,3)

t3 = np.array([[[1,2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值