UVA - 10891 Game of Sum (区间dp)

题意:AB两人分别拿一列n个数字,只能从左端或右端拿,不能同时从两端拿,可拿一个或多个,问在两人尽可能多拿的情况下,A最多比B多拿多少。

分析:

1、枚举先手拿的分界线,要么从左端拿,要么从右端拿,比较得最优解。

2、dp(i, j)---在区间(i, j)中A最多比B多拿多少。

3、tmp -= dfs(i + 1, r);//A拿了区间(l, i),B在剩下区间里尽可能拿最优

tmp是A拿的,dfs(i + 1, r)是B比A多拿的,假设dfs(i + 1, r)=y-x,y是B拿的,x是A拿的

则tmp-dfs(i + 1, r) = tmp - y + x,也就是最终A比B多拿的。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
#define lowbit(x) (x & (-x))
const double eps = 1e-8;
inline int dcmp(double a, double b){
    if(fabs(a - b) < eps) return 0;
    return a > b ? 1 : -1;
}
typedef long long LL;
typedef unsigned long long ULL;
const int INT_INF = 0x3f3f3f3f;
const int INT_M_INF = 0x7f7f7f7f;
const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f;
const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1};
const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1};
const int MOD = 1e9 + 7;
const double pi = acos(-1.0);
const int MAXN = 100 + 10;
const int MAXT = 10000 + 10;
using namespace std;
int sum[MAXN];
int dp[MAXN][MAXN];
int dfs(int l, int r){
    if(dp[l][r] != INT_INF) return dp[l][r];
    int diff = sum[r] - sum[l - 1];
    for(int i = l; i < r; ++i){//先手从左端拿
        int tmp = sum[i] - sum[l - 1];
        tmp -= dfs(i + 1, r);//后手从右端拿
        if(tmp > diff) diff = tmp;
    }
    for(int i = l; i < r; ++i){
        int tmp = sum[r] - sum[i];
        tmp -= dfs(l, i);
        if(tmp > diff) diff = tmp;
    }
    return dp[l][r] = diff;
}
int main(){
    int n;
    while(scanf("%d", &n) == 1){
        if(!n) return 0;
        memset(dp, INT_INF, sizeof dp);
        sum[0] = 0;
        for(int i = 1; i <= n; ++i){
            scanf("%d", &sum[i]);
            sum[i] += sum[i - 1];
        }
        printf("%d\n", dfs(1, n));
    }
    return 0;
}

  

转载于:https://www.cnblogs.com/tyty-Somnuspoppy/p/7358704.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值