转自网易博客http://blog.163.com/lichunliang1988116@126/blog/static/2659944320124115795/
云栖社区https://yq.aliyun.com/articles/40323
问题描述:给定(可能有负数)整数序列A1,A2,A3,...,An,求这个序列中子序列和的最大值。(为方便起见,如果所有整数均为负数,则最大子序列和为0)。
1.时间复杂度为O(n^3)的算法,即枚举法,将原序列的每个子序列枚举出来并求和,最后从中找出一个最大值:
public static int maxSubsequenceSum(int[]a)
{
int maxSum=0;
for(int i=0;i<a.length;i++)//遍历从第一个数开始到最后一个数,以他们为开头的子序列
{
for(int j=i;j<a.length;j++)//第i个数的子序列
{
int thisSum=0;//当前子序列的和
for(int k=i;k<=j;k++)
thisSum+=a[k];
if (thisSum>maxSum)
maxSum=thisSum;
}
}
return maxSum;
}
2.时间复杂度为O(n^2)的算法:即在第一个方法的基础上撤出第三个for循环(不是很懂第一个方法为何要加第三个for循环):
public static int maxSubsequenceSum(int[] a)
{
int maxSum=0;
for(int i=0;i<a.length;i++)
{
int thisSum=0;
for(int j=i;j<a length="" j="" thissum="" a="" j="" if="" thissum="">maxSum)
maxSum=thisSum;
}
}
return maxSum;
}
这里可以撤掉一个for循环的原因是子序列不论在哪里都可以遍历的到呢,如果是要输出最大子序列的话那就比较尴尬了。
3.时间复杂度是O(NlogN)的算法:
用了“分治”策略。
在例子中,最大序列的和只可能出现在3个地方://总有一种快排的错觉
1.出现在输入数据的左半部分
2.出现在输入数据的右半部份
3.跨越输入数据的中部而位于左右两个部分
前两种情况可以递归求解,第三种情况的最大和可以通过求出前半部分(包含前半部分的最后一个元素)的最大和以及后半部分(包含后半部分的第一个元素)的最大和,在讲两者相加得到。
public static int maxSubsequenceSum(int [] a ,int left,int right)
{
if (left==right)
{
if (a[left]>0)
{
return a[left];
}else
{
return 0;//保证最小值是0;
}
}
}
int center=(left+right)/2;
int maxLeftSum=maxSubsequenceSum(a,left,center);
int maxRightSum=maxSubsequenceSum(a,center,right);
//求出左右包含左边右边起始位置的最大子序列和
int leftBorderSum=0,maxLeftBorderSum=0;
for(int i=center;i>=left;i--)
{
leftBorderSum+=a[i];
if (leftBorderSum>maxLeftBorderSum)
{
maxLeftBorderSum=leftBorderSum;
}
}
int rightBorderSum=0,maxRightBorderSum=0;
for(int i=center+1;i<right i="" rightbordersum="" a="" i="" if="" rightbordersum="">maxRightBorderSum)
{
maxRightBorderSum=rightBorderSum;
}
}
//这里max3的方法没有写
return max3(maxLeftSum,maxRightSum,maxLeftBorderSum+maxRightBorderSum);
}
四、时间复杂度为O(N)的方法(interestingO(∩_∩)O哈哈~)
此段摘自:《数据结构与算法分析:java语言描述》机械工业出版社 第32页
一个结论是:如果a[i]是负的,那么它不可能代表最优序列的起点,因为任何包含a[i]的作为起点的子序列都可以通过用a[i+1]作起点而得到改进。类似的,任何负的子序列不可能是最优子序列的前缀(原理相同)。如果在内循环中检测到从a[i]到a[j]的子序列是负的,那么可以推进i。关键的结论是,我们不仅能够把i推进到i+1,而且实际上还可以把它一直推进到j+1。为了看清楚这一点,令p为i+1和j之间的任一下标。开始于下标p的任意子序列都不大于在下标i开始并包含从a[i]到a[p-1]的子序列的对应的子序列,因为后面这个子序列不是负的。也就是说嘛,如果当前的子序列的和没有大于前面最大子序列的和而且还是负的,那肯定是不要了的。
package MaxSequenceSum;
import java.util.Scanner;
public class MaxSequenceSum {
public static void main(String[] args)
{
Scanner input=new Scanner(System.in);
int n=input.nextInt();
int [ ] a=new int [n];
System.out.println();
for(int i=0;i<n;i++)
a[i]=input.nextInt();
System.out.println(sequencesum(a));
}
public static int sequencesum(int a[ ])
{
int maxSum=0;
int nowSum=0;
for(int i=0;i<a.length;i++)
{
nowSum=nowSum+a[i];
if(nowSum>maxSum)
maxSum=nowSum;
else if(nowSum<0)
nowSum=0;
}
return maxSum;
}
}