2031:[例4.17]四位完全平方数

这个四位数有两个特点:
1.前两位上的数字相同,后两位上的数字也相同。
2.这个四位数是一个数的平方倍。
我的思路如下(不懂可以看一看)
1.我们可以算出31×31=961,32×32=1024,既然都不能构成四位完全平方数,那我们就从33开始穷举 吧,一直穷举到99,因为100^2=10000。
2.利用循环来控制一个两位数,用一个变量(可用a)来算这个两位数的平方倍。
3.用四个变量(可用b,c,d,e)分别求出这个四位数的四位上的数。
4.判断b是否等于c,d是否等于e。如果两个条件都满足,那么恭喜你,找到这个数了,然后输出就可以了。反之,如果不满足则继续列举,直到满足为止。
好了,说了这么多,上程序!
#include<bits/stdc++.h>//答案为7744(88^2)
using namespace std;
int main()
{
int a,b,c,d,e

博客介绍了如何解决四位完全平方数的问题,强调数的特点是前两位和后两位数字相同,并且该数是一个数的平方。通过从33开始穷举到99,计算每个两位数的平方,判断是否满足条件,最终找到符合条件的四位完全平方数。文章提供了程序实现思路,并鼓励读者互动交流。
最低0.47元/天 解锁文章
753

被折叠的 条评论
为什么被折叠?



