tensorflow中交叉熵的计算

原创 2018年04月16日 15:32:02

    tf中用于计算交叉熵的主要是下面两个函数:

tf.nn.softmax_cross_entropy_with_logits(
    _sentinel=None,
    labels=None,
    logits=None,
    dim=-1,
    name=None
)
tf.nn.sparse_softmax_cross_entropy_with_logits(
    _sentinel=None,
    labels=None,
    logits=None,
    name=None
)

不过在tensorflow的官方说明中tf.nn.softmax_cross_entropy_with_logits已经被遗弃,建议不再使用,取而代之的是tf.nn.sparse_softmax_cross_entropy_with_logits。但既然是学习,就讲两者放到一起说吧。他们之间主要的区别就是输入参数labels的不同。tf.nn.softmax_cross_entropy_with_logits中labels的元素是非稀疏表示,而tf.nn.softmax_cross_entropy_with_logits中labels中的元素要用稀疏表示。什么意思?假设样本的总的分类数为5,某个样本i为第3类,那么i稀疏表示就是2(分类从0开始),非稀疏表示就是[0, 0, 1, 0, 0],说到底就是分类为5的one-hot编码。

人工智能tensorflow

-
  • 1970年01月01日 08:00

TensorFlow不同交叉熵计算方式

import tensorflow as tf #our NN's output logits=tf.constant([[1.0,3.0,2.0],[3.0,2.0,1.0],[1.0,2....
  • taoyanqi8932
  • taoyanqi8932
  • 2017-08-26 14:30:45
  • 624

tensorflow cross_entropy 四种交叉熵计算函数

Tensorflow交叉熵函数:cross_entropy 以下交叉熵计算函数输入中的logits都不是softmax或sigmoid的输出,因为它在函数内部进行了sigmoid或softmax操作...
  • QW_sunny
  • QW_sunny
  • 2017-04-03 15:36:22
  • 4843

使用TensorFlow编写损失函数 交叉熵(cross entrophy)| 均方误差(MSE)

一. 交叉熵,用于分类问题: 4分类问题,数据的批大小为2,所以此处标签可以用 2*4的矩阵表示,特别注意:输出层为softmax层。 y_:数据的正确标签,用one hot码表示 y1:第一批输入s...
  • u012560212
  • u012560212
  • 2017-06-15 19:16:04
  • 4525

Tensorflow交叉熵计算错误

转载请标明出处:小帆的帆的专栏出现错误的原因-y * np.log(a) - (1-y) * np.log(1 - a)当a = y = 0.0, y * np.log(a) = 0 * -inf =...
  • wo334499
  • wo334499
  • 2016-07-29 17:48:15
  • 3458

Tensorflow四种交叉熵函数

tf.nn.sigmoid_cross
  • yanshuai_tek
  • yanshuai_tek
  • 2017-11-27 22:39:10
  • 332

tensorflow四种交叉熵的计算

  • 2017年06月06日 17:17
  • 21KB
  • 下载

自学Tensorflow之交叉熵MNIST分类

本文用于复习TF官网教学内容第一节MNIST初学主要复习内容为交叉熵、梯度下降tensorflow1.0 mac osx 10.12.4 import部分 from __future__ import...
  • u011068475
  • u011068475
  • 2017-06-06 10:55:06
  • 287

Tensorflow四种交叉熵(cross entropy)算法实现和应用

TensorFlow四种Cross Entropy算法实现和应用 深入理解交叉熵算法定义和TensorFlow深度学习框架的函数实现 ​​​交叉熵介绍 交叉熵(Cross Entro...
  • u012871493
  • u012871493
  • 2017-05-25 21:55:02
  • 1391

tensorflow中损失函数总结

(1)sequence_loss_by_example(logits, targets, weights) 这个函数用于计算所有examples的加权交叉熵损失,logits参数是一个2D Tens...
  • u014221266
  • u014221266
  • 2016-12-24 09:49:26
  • 5336
收藏助手
不良信息举报
您举报文章:tensorflow中交叉熵的计算
举报原因:
原因补充:

(最多只允许输入30个字)