K-means聚类:解锁数据隐藏结构的钥匙 K-means聚类算法作为一种经典的无监督学习算法,具有简单高效的特点,广泛应用于市场细分、图像分割和基因聚类等领域。尽管存在一些局限性,但通过改进方法,可以有效克服这些局限性,提高聚类效果。在实际应用中,需要根据具体问题和数据集特点选择合适的聚类算法和参数,以实现最佳的聚类效果。通过本文的介绍,希望读者能够全面了解K-means聚类算法,并掌握其在实际问题中的应用。