- 博客(74)
- 资源 (5)
- 问答 (1)
- 收藏
- 关注
原创 DenseNet
原文链接:https://arxiv.org/abs/1608.06993DenseNet原版代码:https://github.com/liuzhuang13/DenseNet创新点:DenseNet作为2017CVPR最佳论文,其在ResNet基础上,提出了更优秀的shortcut方式,Dense Connection 不仅能使得feature更加强健,还能带来更快的收敛速度。并且De...
2018-03-07 20:34:56
1020
原创 ResNeXt : Aggregated Residual Transformations for Deep Neural Networks
论文链接:https://arxiv.org/abs/1611.05431创新点:ResNeXt在ResNet的基础上,结合ResNet的block stack策略以及Inception结构分组卷积的思想,设计aggregrated transformations策略,在不增加模型复杂度的情况下,提高了模型识别的准确率,虽然没有提出特别新奇的网络结构,但是ResNeXt利用更简单的拓扑结构在不...
2018-03-05 20:17:52
1334
原创 TPAMI2017 SegNet:A Deep Convolutional Encoder-Decoder Architecture for Scene Segmentation
论文链接:https://arxiv.org/abs/1511.005611、简介目前,利用深度神经网络进行语义分割虽然取得了一定效果,但在进行特征提取的时候,通过pooling进行下采样,会导致结果较为粗糙。为得到更好的分割效果,本文作者提出了一种用于语义分割的全卷积网络:SegNet网络,提高分辨率的同时对于边界的定位较为准确。SegNet以场景理解为目标应用,是一种end-to-...
2018-03-02 00:30:28
3008
原创 CVPR2015 FCN网络简介 (Fully convolutional networks for semantic segmentation)
论文链接:https://arxiv.org/abs/1411.4038作者源码链接:https://github.com/shelhamer/fcn.berkeleyvision.org1、简介本文是对神经网络的一个较大改进,通过端到端、像素到像素的训练,实现像素级别的分类任务,并且取得了很好的效果,同时也是PASCAL VOC当时最出色的分割方法。2、FCN2.1 ...
2018-03-01 00:33:49
735
原创 GoogleNetV4 Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
论文链接:https://arxiv.org/abs/1602.072611、简介本文主要是将googLeNet的Inception模块与ResNet结构进行融合,得到Inception-ResNet结构,作者通过实验发现,该结构对于图像识别的准确率并没有较大的提升但是对于网络的收敛速度有了较大的改进。2、Inception V4话不多说,直接上图: 所有图中没有标记“V”的卷...
2018-02-14 17:46:20
651
原创 GoogleNetV3 Rethinking the Inception Architecture for Computer Vision
论文链接:https://arxiv.org/abs/1512.005671、introductionGoogLeNet与VGG在2014年ImageNet比赛中均取得了较好的成绩,但是在参数数量和计算资源方面,GoogLeNet更少,GoogLeNet有大约5百万个参数,相比较与6000万参数的AlexNet,少了12倍,而VGG的参数数量是AlexNet参数数量的3倍多,因此Goo...
2018-02-13 18:58:02
515
原创 解密ResNet:Identity Mappings in Deep Residual Networks
论文链接:https://arxiv.org/abs/1603.05027本篇文章是对ResNet取得较好效果的分析与改进,在过去residual block的基础上,提出了新的residual block,并通过一系列实验验证了identity mapping能对模型训练产生很好的效果。1、介绍1、ResNet block表示:resnet block结果如下: res
2018-02-05 18:46:13
1182
原创 ResNet(Deep Residual Learning for Image Recognition)
论文链接:https://arxiv.org/abs/1512.03385Resnet是2015年ImageNet比赛的冠军,不仅在分类上标线优秀,在目标检测中同样取得好成绩,Resnet将网络层数进一步加深,甚至达到1000+层。1、Degradation根据经验,如果没有发生梯度消失、弥散现象,网络层数越深效果会越好,但是作者实验发现,虽然网络层数增加,但是训练会出现饱和现象
2018-02-04 17:16:05
1596
原创 Batch Normalization
本文链接:https://arxiv.org/abs/1502.03167简介在深度神经网络训练的过程中,当前面层的参数发生变化时,会导致后面层输入数据的分布变化,进而影响训练效果,使网络的训练变得复杂。本文提出了一种Batch Normalization方法解决这个问题,该方法可以使用较大的学习率进行学习,同时可以忽略掉dropout的作用,提高模型收敛速度,提高识别率。Intr
2018-01-31 16:38:24
609
原创 GoogleNet V1 Going deeper with convolutions
论文链接:http://arxiv.org/pdf/1409.4842v1.pdf1、简介GoogleNet V1作为ILSVRC2014比赛的冠军,一经问世便受到了广泛的关注,并且也得益于其独特的网络设计,相比较于同期的VGG,GoogleNet使得网络的深度得到了进一步的增加,网络宽度更宽,卷积层数量更多。之后又在V1的基础上发展出了V2-V4版本,使得识别准确率进一步提升。2、G
2018-01-29 20:13:35
372
原创 Visualizing and Understanding Convolutional Networks
论文链接:https://link.springer.com/chapter/10.1007/978-3-319-10590-1_53本文贡献CNN在图像分类中的表现中取得了惊人的进展,但是对于为什么CNN表现的如此之好还没有一个清晰的解释。本文主要介绍如何利用反卷积进行CNN的可视化,通过对特征图进行反卷积,直观感受特征图提取到的图像特征,对CNN的分类结果加以说明,同时介绍了基于CNN
2018-01-24 15:04:43
338
原创 Network In Network
写在前面的话1、网络简介Network In Network是2014年ICLR中一篇比较出众的论文,该论文在CNN的基础上,通过设计mlpConv以及利用全局Pooling替代全连接层的方式,不仅减少了参数的数量,同时减少了过拟合的发生。同时GoogleNet中也采用了Network In Network中的思想,下面对论文进行详细的总结。2、Introduction1、
2018-01-21 17:41:56
739
原创 VGG
VGG网络简介VGG网络是在AlexNet网络的基础上发展而来的,其主要贡献在于使用非常小的3*3的卷积核进行网络设计,并且将网络深度增加到16-19层。在2014年ImageNet比赛中,获得了定位第1,分类第2的好成绩,网络具有很好的泛化能力。VGG网络结构 网络结构 如下图是VGG网络不同深度的网络结构图,从左到右层数在增加。 对比与AlexNet的异同 VGG与
2018-01-17 20:29:46
16441
原创 AlexNet
一、AlexNet网络简介AlexNet是较早期的一个卷积神经网络,由于其在ImageNet比赛中的出色表现(top1与top5的error rate分别为37.5%与17%),也掀起了学术界对深度学习的研究热潮,下面结合AlexNet的论文,对AlexNet进行简单的总结,有不足的地方,欢迎指正。二、alexNet网络结构AlexNet为8层结构,其中前5层为卷积层,后面3
2018-01-17 13:06:13
6288
2
原创 C++面试-常考知识点总结
原文链接写在前面的话找工作面试常考c++知识点,掌握如下这些知识点,应对一般的c++知识点面试应该没有问题,希望大家都能收到理想offer1、虚函数与纯虚函数的比较虚函数为了重载和多态的需要,在基类中是有定义的,即便定义是空,所以子类中可以重写也可以不写基类中的此函数。纯虚函数在基类中是没有定义的,必须在子类中加以实现。虚拟函数就是为了对“如果你以一个基础类指针指向一个衍生类对象,那么通过该
2017-09-23 09:32:04
1459
转载 Fast-Rcnn介绍
本文转载自:https://saicoco.github.io/Fast-RCNNFast-RCNN之所以称为Fast,较RCNN快在proposals获取:RCNN将一张图上的所有proposals都输入到CNN中,而Fast-RCNN利用卷积的平移不变形,一次性将所有的proposals投影到卷积后的feature maps上, 极大的减少了运算量;其次则是端到端的训练,不像以前...
2017-07-05 15:07:54
1669
原创 leetcode-307. Range Sum Query - Mutable]()
一、题目大意:题目简单,给定一个数组,对数组进行更新以及求和 例如: Given nums = [1, 3, 5] sumRange(0, 2) -> 9 update(1, 2) sumRange(0, 2) -> 8 二、解题思路: 此题看起来简单,但是考点并非是我们看来的那样,此题考点使用树状数组。 何为数状数组,就是利用 sum 保存部分节点的和,如下图所
2017-05-25 16:08:15
411
原创 pycaffe的使用一
参考连接:caffe入门:pycaffe的使用一、几个经常使用的net.params[‘layerName’][0].data访问权重(num_filter,channel,weight,high)net.params[‘layerName’][1].data访问biase,格式是(biase)。net.blobs[‘layerName’].data访问输入数据,这里最常用的也就是net.bl
2017-05-20 21:49:28
1164
原创 LeetCode-7:Reverse Integer
第七题: reverse integer 题目概述: **English:**Reverse digits of an integer. 中文意思:将一个整型变量倒置,如将123变为321,将-123变为-321. Example1: x = 123, return 321 Example2: x = -123, return -321 题目求解:
2016-11-10 15:04:16
323
原创 利用 OpenCV 在MFC中显示图像问题以及解决方法
最近在做一个项目,需要在MFC中显示OpenCV读取的图像,遇到了一些问题,现在总结如下,希望对大家有帮助。问题1:如何在MFC控件中显示OpenCV读取的图像1.1问题说明在做工程项目的时候遇到了这样一个问题,将用OpenCV读取的图像(Mat类型,或者IPlImage类型)显示在MFC的Picture控件中,那么将如何才能方便的显示呢?1.2解决方法经过研究发现如下两种方法:1、利用CvvIm
2016-10-03 09:52:19
2020
原创 浅谈 变量以及函数的声明以及定义,以及对extern “C”的理解
对extern “C” 函数声明与定义 变量声明与定义 static extern 做了教详细的介绍
2016-05-07 15:42:53
984
1
原创 简单的感知学习原理例子 人工神经网络 Perceptron Learning Rule
Question: Train a neuron using the Perceptron Learning Rule, taking: c = 1 w1 = [0 1 0]t ( x1 = [2 1 -1]t , d1 = -1 ) //t代表矩阵的转置
2015-12-12 21:24:31
2275
原创 图像旋转 双线性插值 c++
前面详细介绍了最近邻插值实现图像的旋转,但是我们都知道,最近邻插值对于图像的旋转效果不是特别的好。所以在本文中,我们详细讨论一下双线性插值算法。 首先,详细介绍一下什么事双线性插值,以及双线性插值为什么会比最近邻插值效果好一些。 为什么图像的旋转一定要插值,因为在旋转过程中,由于三角函数的影响,导致旋转后的点,并不是每一个点都可以在原图像中找到对
2015-12-08 14:38:40
8284
原创 MFC下实现 灰度图像显示函数代码 C++
首先,在做图像编程的过程中,对于图像的显示是非常重要的,我们对于图像的处理,经常会用到图像的显示,用于查看结果是否正确,所以我们自然会产生一个想法,是否可以编写一个图像显示的函数,类似于matlab中的imshow()函数,可以随时将图像打印出来呢?答案必然是肯定的,在这里,我们事先在mfc环境下,如何实现自己的imshow()函数。并且在mfc环境下,vc++为我们提供了很多便捷的结构体和函数,
2015-12-07 19:36:52
7378
转载 Deep Learning(深度学习)学习笔记整理 推荐
http://www.sigvc.org/bbs/thread-2187-1-3.html前段时间查了一些深度学习的资料,该链接是 另一博主总结的 深度学习的学习笔记作者写的还是很详细的,对于没有接触过深度学习的同学可以起到很好的入门做种。在此,也感谢该博主的总结,受益匪浅。
2015-12-06 13:40:42
705
原创 最近邻方法进行图像旋转 c++代码 旋转后图像内容无损失
该文章介绍了 采用最近邻方法实现函数旋转的原理以及代码实现,旋转后保留图片内容,图片变大了一丢丢~
2015-12-06 13:10:09
3315
1
原创 最近邻图像旋转代码 灰度图像 c++实现
图像旋转的公式如下,如何推倒在此便不再详细介绍: x0 = (x-xr)*CosTheta - (y-yr)*SinTheta + xr + 0.5y0 = (y-yr)*CosTheta + (x-xr)*SinTheta + yr + 0.5其中, x , y 为旋转后图像像素 x0 , y0 为其旋转前对应的像素 , 本公式中 顺时针方向旋转角度为 - ,
2015-12-05 16:20:45
2295
1
原创 如何写memset函数
头文件 : <memory.h>或<string.h>函数 : void *memset(void *s, int ch, size_t n); 函数解释:将s中前n个字节替换为ch并返回s; 一般用于清零,初始化。常见用法示例:int * d=new int[width];memset(d ,0, width*sizeof(i...
2015-09-03 20:12:10
917
3
操作系统课设-文件系统-超级块位示图-管理文件
2014-08-12
BMP图像到JPEG图像的转换,分析影响压缩率的主要因素有哪些。
2015-03-21
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅