春枫琰玉
码龄13年
关注
提问 私信
  • 博客:382,134
    问答:836
    382,970
    总访问量
  • 72
    原创
  • 2,050,071
    排名
  • 146
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:辽宁省
  • 加入CSDN时间: 2012-05-13
博客简介:

小菜鸟的AI之路

博客描述:
小菜鸟的AI之路,欢迎交流,计算机视觉,深度学习,图像处理等相关知识
查看详细资料
个人成就
  • 获得183次点赞
  • 内容获得127次评论
  • 获得1,118次收藏
创作历程
  • 5篇
    2020年
  • 18篇
    2019年
  • 31篇
    2018年
  • 7篇
    2017年
  • 6篇
    2016年
  • 7篇
    2015年
成就勋章
TA的专栏
  • 模型压缩
    1篇
  • 人脸检测
    1篇
  • 一起学深度学习之Gluon
    4篇
  • c++ 函数
    10篇
  • 机器学习
  • c语言基础
    2篇
  • hihocoder
    1篇
  • OpenCV
    1篇
  • MFC
    1篇
  • leetcode
    2篇
  • caffe
    2篇
  • pycharm使用教程
    1篇
  • 深度学习-目标检测
    24篇
  • 图像分类
    18篇
  • 深度学习
    34篇
  • 生活
  • mxnet
    4篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习pytorch图像处理
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

重读经典-EfficientNet

EfficientNet也是以前看过的一篇文章的,当时主要看了网络结构,对于文章的思考并没有很深入,这次重新看一下,加深一下对于文章的思考。作者:Google论文链接:https://arxiv.org/abs/1905.11946开源代码:https://github.com/tensorflow/tpu/tree/master/models/official/efficientnetModel Scaling本篇文章的重点是Model Scaling,至于Efficientnet只是作者在
原创
发布博客 2020.12.01 ·
635 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Network slimming,一个比较好用的模型剪枝方法

由于深度学习模型大小以及计算资源的限制,导致将深度学习模型部署到如移动端的时候会受到一定的限制,为了解决这个问题,就形成了一个新的领域:模型压缩,即减少模型的参数以及计算量,并且依然保证模型的精度。常见的方法比如:量化、剪枝、蒸馏等,本文便是“剪枝”当中一篇非常经典的文章,也是比较有效果的一篇文章。本文方法其实比较简单:首先,使用L1 regularization对BN层的scaling factor进行稀疏化训练,然后将scaling factor较小的参数相连接的filter减掉,达到减少模型size.
原创
发布博客 2020.06.24 ·
2487 阅读 ·
1 点赞 ·
0 评论 ·
14 收藏

GhostNet

本篇论文是发表于CVPR2020的一篇轻量级网络的论文,作者是华为诺亚方舟实验室,文章的总体思路比较清晰,为了减少网络计算量,作者将传统的卷积分成两步进行,首先利用较少的计算量通过传统的卷积生成channel较小的特征图,然后在此特征图的基础上,通过cheap operation(depthwise conv)再进一步利用较少的计算量,生成新的特征图,最后将两组特征图拼接到一起,得到最终的out...
原创
发布博客 2020.03.08 ·
20041 阅读 ·
22 点赞 ·
1 评论 ·
164 收藏

S3FD

欢迎访问我的个人博客查看更多文章:https://www.wanglichun.tech/2020/03/03/s3fd/这篇文章是ECCV2017一篇比较经典的人脸检测的文章,是一篇很实用的针对小脸优化的文章。读下来,文章并没有提出特别牛逼的理论或者网络,而是在SSD的基础上,进行了针对小脸的一系列优化,最终实现了对小脸检测效果的提升,相比于提出高大上理论的论文,本篇论文中提出的方法更容易实...
原创
发布博客 2020.03.05 ·
799 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

FASF(CVPR2019)

本篇文章是CVPR2019的一篇Anchor-Free的文章,是一篇很好的Anchor Free的目标检测的文章,目前基于anchor的目标检测方法,大多采用不同的level预测不同尺度的instance,而分配规则往往是人为设计的,这导致anchor的匹配策略可能不是最优的。那有没有更优的匹配方法?文章从level选取的点进行切入,利用FASF实现不同的instance在不同level的动态分...
原创
发布博客 2020.01.02 ·
2267 阅读 ·
1 点赞 ·
1 评论 ·
3 收藏

FoveaBox

FoveaBox是CVPR2019的一篇anchor free的目标检测文章,其思想跟FCOS很相似,都是在RetinaNet的基础上,在不同stage输出的特征图上,直接得到目标类别并回归出目标的位置,相比FCOS,FoveaBox要更简单一些,FoveaBox在COCO的精度可以达到42.1。作者:Tao Kong Fuchuan Sun 等论文链接:https://arxiv....
原创
发布博客 2019.12.30 ·
3114 阅读 ·
2 点赞 ·
0 评论 ·
8 收藏

docker总结,基本上常用到的操作这里面都有了

在程序开发过程中,经常需要我们去配置各种开发环境,而本地与线上还可能存在环境依赖的不同,导致出现一些不知名的bug,这个时候不要抓头,是时候使用docker来帮你排忧解难了,下面我通过下面几个篇章来介绍Docker.原理介绍篇Docker是什么docker是linux容器的一种封装,提供简单易用的容器使用接口。它是最流行的Linux容器解决方案。简单来说就是,docker可以将你的环境进行...
原创
发布博客 2019.12.27 ·
345 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

RFBNet

RFBNet是ECCV2018的一篇文章,文章的主要创新点在于通过Inception结构以及dilated conv模拟了人类的视觉结构—越往外视觉感受野也越大,提出了RFB结构,并将RFB结构应用于SSD结构上,实现了在不增加过多计算量的情况下模型效果的提升。作者: Songtao Liu, Di Huang, Yunhong Wang论文链接: RFBNet论文代码链接: http...
原创
发布博客 2019.12.27 ·
1074 阅读 ·
0 点赞 ·
0 评论 ·
12 收藏

初识 TVM

如有图像或公式显示错误,可以访问我的个人博客:https://www.wanglichun.tech/2019/11/15/tvm/笔者也是最近偶然的机会才开始接触TVM,使用过后发现,经过auto-tuning后的TVM模型在速度是竟然超过了TensorRT,并且笔者使用的是MXNet框架,TVM对MXNet绝对的友好,对于Pytorch等模型,可以使用ONNX,操作也一样简单,使用起来基本类...
原创
发布博客 2019.11.15 ·
6770 阅读 ·
6 点赞 ·
0 评论 ·
28 收藏

ExtremeNet论文详解

论文名称:Bottom-up Object Detection by Grouping Extreme and Center Points作者:Xingyi Zhou&Jiacheng Zhuo等论文链接:https://arxiv.org/pdf/1901.08043.pdf代码链接:https://github.com/xingyizhou/ExtremeNet提要本篇论文...
原创
发布博客 2019.08.11 ·
6300 阅读 ·
3 点赞 ·
1 评论 ·
28 收藏

FCOS算法详解

论文名称:FCOS:Fully Convolutional One-Stage Object Detection作者:Zhi Tian & Chunhua Shen等论文链接:https://arxiv.org/abs/1904.01355代码链接:https://github.com/tianzhi0549/FCOS/简要概述文章精华FCOS算法也是一篇anchor free...
原创
发布博客 2019.07.10 ·
17083 阅读 ·
8 点赞 ·
11 评论 ·
85 收藏

CornerNet,CenterNet关键代码解读: kp,_decode,left pooling

今天大致看了一下CornerNet的代码,对其中的关键代码做一些整理。由于CenterNet(CenterNet:Keypoint Triplets for Object Detection)是在CornerNet的基础上修改来的,所以基本是一致的cornernet的主要结构基本都定义在./models/py_utils文件夹下,主干结构定义在./models/py_utils/kp.py这个...
原创
发布博客 2019.07.05 ·
5625 阅读 ·
8 点赞 ·
4 评论 ·
37 收藏

CenterNet: Keypoint Triplts for Object Detection 论文阅读笔记

论文名称:CenterNet: Keypoint Triplts for Object Detection作者:Kaiwen Duan & Song Bai等论文链接:https://arxiv.org/abs/1904.08189代码链接:https://github.com/Duankaiwen/CenterNet简要概述文章精华本篇文章是一篇anchor free的目标检...
原创
发布博客 2019.07.02 ·
736 阅读 ·
3 点赞 ·
0 评论 ·
8 收藏

mobilenet系列之又一新成员---mobilenet-v3

摘要:mobilenet-v3,是google在mobilenet-v2之后的又一力作,主要利用了网络结构搜索算法(NAS)来改进网络结构。并且本文提出了movilenetv3-large, mobilenet-v3 small。在语义分割,本文提出了一个新的方法:LR-ASPP.mobilenet-v3 large在imagenet分类任务上,较mobilenet-v2,精度提高了大约3....
原创
发布博客 2019.06.15 ·
56706 阅读 ·
24 点赞 ·
5 评论 ·
194 收藏

动手学gluon系列之--上采样的实现方法:Conv2DTranspose,转置卷积的实现与原理

说道上采样,就不得不提一篇非常经典的论文FCN,其在使用卷积缩放尺度后,利用上采样将特征图放大,实现图像分割,并且论文中多次提到的利用双线性插值实现上采样,那么在gluon中,如何实现呢?这里需要使用函数nn.Conv2DTranspose,本质就是下面这两行(备注中包含参数介绍)### 利用反卷积实现上采样,初始化方式采用Bilinear便实现了双线性插值上采样upsample=nn.C...
原创
发布博客 2019.05.17 ·
1927 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

动手学gluon系列之读取预训练模型----多种方法读取预训练模型进行finetune

本文主要是博主学习gluon时候的一些总结,共勉,如有错误,欢迎指正gluon主要有3个方法得到预训练模型:gluon自身的model_zoogluoncv提供的model_zoomxnet提供的预训练模型(.params ,.json)下面分别就这三个方面进行介绍一:读取gluon model_zoo提供的模型,并进行finetunegluon提供的model主要在gluon...
原创
发布博客 2019.05.14 ·
2843 阅读 ·
2 点赞 ·
2 评论 ·
9 收藏

动手学mxnet系列之读取图像----多种方式读取图像送入mxnet模型

前言当我们已经有了现成的mxnet模型,如何在自己的数据上测试模型效果呢(即一张一张或者几张几张的过模型),这就涉及到如何读取图像,并将其变换为mxnet认识的结构(一般是4维),并送入模型,其实不光是mxnet,所有的深度学习框架都会有这个处理过程,这里,博主总结了几种常用的方法,都是比较简单的,个人比较喜欢使用mxnet.image.imread()或者是cv2.imread()其实无论采...
原创
发布博客 2019.05.13 ·
5326 阅读 ·
2 点赞 ·
6 评论 ·
12 收藏

动手学mxnet系列之NDArray

NDArray是MXNet的基础,无论多么复杂的网络,都是建立在NDArray上面的,NDArray就好像是盖深度学习这座大厦的砖~
原创
发布博客 2019.03.27 ·
1135 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

SNIPER: Efficient Multi-Scale Training

论文名称: SNIPER: Efficient Multi-Scale Training作者:Bharat Singh & Mahyar Najibi & Larry S.Davis论文链接https://arxiv.org/abs/1805.09300:代码链接:https://github.com/bharatsingh430/snip简要概述文章精华目标检测中的小目...
原创
发布博客 2019.03.14 ·
2145 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

SNIP-An Analysis of Scale Invariance in Object Detection

论文名称 : An Analysis of Scale Invariance in Object Detection – SNIP论文作者:Bharat Singh & Larry S.Davis论文链接:https://arxiv.org/abs/1711.08189代码链接:https://github.com/bharatsingh430/snip简要概述本篇文章是一篇优...
原创
发布博客 2019.02.25 ·
585 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏
加载更多