[BZOJ3566][SHOI2014]概率充电器(概率期望+树形dp)

版权声明:转载请注明出处:http://blog.csdn.net/clove_unique https://blog.csdn.net/Clove_unique/article/details/71194139

题目描述

传送门

题目大意:一棵树,每一个点初始有一个概率为1,然后每个点可以沿着边向四周扩展,每条边有一个概率可以经过,问最终为1的点的个数的期望。

题解

f(i)表示点i从父亲扩展不到的概率,g(i)表示点i从儿子扩展不到的概率
最终的答案是 sigma 1 - f(i) * g(i) * (1-p(i))
转移的时候,先计算出来某一个点扩展不到的概率,应该为f(i) or g(i) * 点不为1的概率,然后从某一条边过来的时候应该是 边不连通的概率 +边连通的概率 * 点扩展不到的概率

代码

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
#define N 500005

int n,son[N],isleaf[N];
int tot,point[N],nxt[N<<1],v[N<<1];double c[N<<1];
double ans,p[N],q[N],f[N],g[N],h[N];

void add(int x,int y,double z)
{
    ++tot; nxt[tot]=point[x]; point[x]=tot; v[tot]=y; c[tot]=z;
}
void dp_g(int x,int fa)
{
    g[x]=1.0;
    for (int i=point[x];i;i=nxt[i])
        if (v[i]!=fa)
        {
            dp_g(v[i],x);
            double now=g[v[i]]*(1.0-p[v[i]]);
            h[v[i]]=(1.0-c[i])+c[i]*now;
            g[x]*=h[v[i]];
        }
}
void dp_f(int x,int fa)
{
    son[0]=0;
    for (int i=point[x];i;i=nxt[i])
        if (v[i]!=fa)
        {
            f[v[i]]=1.0;
            son[++son[0]]=v[i],q[son[0]]=c[i];
        }
    double now=1.0;
    for (int i=1;i<=son[0];++i)
        f[son[i]]*=now,now*=h[son[i]];
    now=1.0;
    for (int i=son[0];i>=1;--i)
        f[son[i]]*=now,now*=h[son[i]];
    for (int i=point[x];i;i=nxt[i])
        if (v[i]!=fa)
        {
            f[v[i]]=f[v[i]]*f[x]*(1.0-p[x]);
            f[v[i]]=(1.0-c[i])+f[v[i]]*c[i];
            dp_f(v[i],x);
        }
}
int main()
{
    scanf("%d",&n);
    for (int i=1;i<n;++i)
    {
        int x,y;double z;
        scanf("%d%d%lf",&x,&y,&z);
        add(x,y,z/100.0),add(y,x,z/100.0);
    }
    for (int i=1;i<=n;++i) scanf("%lf",&p[i]),p[i]/=100.0;
    dp_g(1,0);
    f[1]=1.0;dp_f(1,0);
    for (int i=1;i<=n;++i)
        ans+=1.0-f[i]*g[i]*(1.0-p[i]);
    printf("%.6lf\n",ans);
}


没有更多推荐了,返回首页