Codeforces Round #599 (Div. 2) D.0-1 MST(补图连通块/并查集)

题目

给一个n(n<=1e5)个,点m(m<=n*(n+1)/2)条边的图,

图本是完全图,这m条边的代价都为1,其余的边的代价都为0,

求这个图的最小生成树的代价,输出代价

思路来源

官方题解

题解1

考虑把0边的在并查集都合在一起,忽略1边,就变成了补图x个连通块,

使x个联通块相同必须用1的代价,答案即补图连通块个数-1,

一条边只在点号大的时候考虑一次,对于一个给定点u,

如果u连向另一连通块v的1边的个数now[v]比这个连通块的大小sz[v]要小,

说明u一定有0边连向这个连通块v,即合并u和v的集合

检查所有边,每次并查集合并复杂度logn,总复杂度大概O(nlogn+m)

代码1

#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10,mod=1e9+7;
int n,m,u,v,x,y;
int sz[N],par[N];
int rt[N],tot,num;//rt[]:满足par[i]==i的集合 
int now[N],ans;//now[i]:现在的点的个数 
vector<int>e[N];
int find(int x)
{
	return par[x]==x?x:par[x]=find(par[x]);
}
int main()
{
	//求补图连通块的块数 
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;++i)
	{
		par[i]=i;
		sz[i]=1;
	}
	for(int i=1;i<=m;++i)
	{
		scanf("%d%d",&u,&v);
		e[u].push_back(v);
		e[v].push_back(u);
	} 
	for(int i=1;i<=n;++i)
	{
		for(int v:e[i])
		{
			if(v>i)continue;
			now[find(v)]++;
		}
		for(int j=1;j<=tot;++j)//1-tot为已出现的点 rt[j]为现存的根 
		{
			x=find(rt[j]);
			y=find(i);
			if(x==y)continue;
			if(sz[x]>now[x]) 
			{
				par[y]=x;
				sz[x]+=sz[y];
			}
		}
		num=0; 
		for(int j=1;j<=tot;++j)
		if(find(rt[j])==rt[j])rt[++num]=rt[j];
		if(find(i)==i)rt[++num]=i;
		tot=num;
		for(int v:e[i])
		{
			if(v>i)continue;
			now[find(v)]=0;
		}
	}
	for(int i=1;i<=n;++i)
	if(find(i)==i)ans++;
	printf("%d\n",ans-1);
	return 0;
} 

题解2

做法是bfs,set维护当前没有确定集合的点,确定了一个点即将其删掉,

此做法复杂度比较玄学,据说均摊O(nlogn+nlogm)

其实不是愁没有做法,只是不敢莽啊,分析不出确切复杂度,参考一下qls的代码吧

但感觉好像最坏情况应该是sqrt个块,每个内部完全图的情形,这样好像也只是nsqrt(n)的样子?

#include<bits/stdc++.h>
using namespace std;
const int MAXN=200005;
bool vis[MAXN],ban[MAXN];
list<int> fre;
vector<int> e[MAXN];
int bfs(int st)
{
    int res=0;
    queue<int> q;
    q.push(st);
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        if(vis[u])continue;
        vis[u]=1,res++;
        for(auto &v:e[u])ban[v]=1;
        for(auto itr=fre.begin();itr!=fre.end();)
        {
            int v=*itr;
            if(!ban[v])
            {
                q.push(v);
                fre.erase(itr++);
            }
            else itr++;
        }
        for(auto &v:e[u])ban[v]=0;
    }
    return res;
}
int main()
{
    int n,m;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
        fre.push_back(i);
    for(int i=1;i<=m;i++)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        e[x].push_back(y);
        e[y].push_back(x);
    }
    vector<int> con;
    for(int i=1;i<=n;i++)
        if(!vis[i])con.push_back(bfs(i));
    sort(con.begin(),con.end());
    printf("%d\n",(int)con.size()-1);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小衣同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值