使用Keras搭建LSTM文本分类器

本文介绍了如何利用Keras框架搭建LSTM文本分类器,以处理IMDB电影评论数据集。通过预处理文本,设定固定长度,构建包含Embedding和LSTM层的模型,最终在训练后评估模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用Keras搭建LSTM文本分类器

在自然语言处理领域,文本分类是一个重要的任务。而长短时记忆网络(LSTM)是一种常用于处理序列数据的神经网络模型,可以有效地捕捉文本中的长期依赖关系。因此,我们可以使用Keras框架来构建一个LSTM文本分类器。

首先,我们需要准备好文本数据集。这里以IMDB电影评论数据集为例,数据集分为训练集和测试集,每个样本都是一个文本评论和对应的情感标签(正面或负面)。下载链接:http://ai.stanford.edu/~amaas/data/sentiment/

导入必要的库和数据集:

import numpy as np
from keras.datasets import imdb
from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential
from keras.layers import Dense, Dropout, LSTM, Embedding
from keras.callbacks import ModelCheckpoint

# 设定随机数种子,确保结果可重复
np.random.seed(42)

# 导入IMDB数据集
(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=10000)

在导入数据后࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值