人工智能资料库:第40辑(20170303)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/CoderPai/article/details/80275587

作者:chen_h
微信号 & QQ:862251340
微信公众号:coderpai


  1. 【代码】Pyreclab: Recommendation lab for Python

简介:

Pyreclab is a recommendation library designed for training recommendation models with a friendly and easy-to-use interface, keeping a good performance in memory and CPU usage.

In order to achieve this, Pyreclab is built as a Python module to give a friendly access to its algorithms and it is completely developed in C++ to avoid the lack of performace of the interpreted languages.

原文链接:https://github.com/gasevi/pyreclab


2.【博客】Optimisation and training techniques for deep learning

简介:

Today we’re looking at the ‘optimisation and training techniques’ section from the ‘top 100 awesome deep learning papers’ list.

原文链接:https://blog.acolyer.org/2017/03/01/optimisation-and-training-techniques-for-deep-learning/


3.【博客】The Lisp approach to AI (Part 1)

简介:

If you are a programmer that reads about the history and random facts of this lovely craft, and practice it ad honorem — just for fun — , you have found yourself reading about a programming language called Lisp. Some praise it as a software miracle, as the best tool for programming. Some even dare to call Lisp one of the best programming languages ever invented (even if that doesn’t make sense at all). After all, before Python, Scala, Haskell, there was programming, and before Deep Learning there was Artificial Intelligence.

原文链接:https://medium.com/ai-society/the-lisp-approach-to-ai-part-1-a48c7385a913#.wq5h0kaf2


4.【代码】Fasttext:Pre-trained word vectors

简介:

We are publishing pre-trained word vectors for 90 languages, trained on Wikipedia. These are vectors in dimension 300, trained with the default parameters of fastText.

原文链接:https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md


5.【项目】Self-driving cars in the browser

简介:

This is a project I have been working on for quite some time now. These cars learned how to drive by themselves. They got feedback on what good and what bad actions are based on their current speed as a form of reward. Powered by a neural network.

You can drag the mouse to draw obstacles, which the cars must avoid. Play around with this demo and get excited about machine learning!

The following is a more detailed description of how this works. You may stop reading here and just play with the demo if you’re not interested in the technical background!

原文链接:http://janhuenermann.com/projects/learning-to-drive?utm_campaign=Revue+newsletter&utm_medium=Newsletter&utm_source=revue


阅读更多 登录后自动展开

扫码向博主提问

coderpai

问题是最好的解答
去开通我的Chat快问
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页