1一致性哈希失效处理
其实比较容易出现的问题是漂移的问题:某个节点失效了,缓存都漂到下个节点了;然后一会它又恢复了,这时候它就有脏数据了。
解决办法一是每个节点引入集群。
不用集群想彻底解决这个问题,可能需要引入第三方健康检查组件,如Consul,发现节点不稳定立即删除下线。
2缓存命中率及单一热点问题
一致性哈希解决的是某节点宕机后缓存失效的问题,只会导致相邻节点负载增加。但是因为宕机后需要重新从数据库读取,会导致此时缓存命中率下降及db压力增加。
也无法避免单一热点问题。某一数据被海量请求,不论怎么哈希,哈希环多大,数据只存在一个节点,早晚有被打垮的时候。
此时的解决策略是每个节点主备或主主集群。
3.Hash环的数据倾斜问题
一致性Hash算法在服务节点太少时,容易因为节点分部不均匀而造成数据倾斜(被缓存的对象大部分集中缓存在某一台服务器上)问题,例如系统中只有两台服务器,其环分布如下:
此时必然造成大量数据集中到Node A上,而只有极少量会定位到Node B上。为了解决这种数据倾斜问题,一致性Hash算法引入了虚拟节点机制,即对每一个服务节点计算多个哈希,每个计算结果位置都放置一个此服务节点,称为虚拟节点。具体做法可以在服务器IP或主机名的后面增加编号来实现。
例如上面的情况,可以为每台服务器计算三个虚拟节点,于是可以分别计算 “Node A#1”、“Node A#2”、“Node A#3”、“Node B#1”、“Node B#2”、“Node B#3”的哈希值,于是形成六个虚拟节点:
同时数据定位算法不变,只是多了一步虚拟节点到实际节点的映射,例如定位到“Node A#1”、“Node A#2”、“Node A#3”三个虚拟节点的数据均定位到Node A上。这样就解决了服务节点少时数据倾斜的问题。在实际应用中,通常将虚拟节点数设置为32甚至更大,因此即使很少的服务节点也能做到相对均匀的数据分布。