考研数一|导数的计算(笔记)V2

导数的计算
基本概念
求导公式
14个求导公式
1. ( C ) ′ = 0 1.\qquad{\left ( C \right )}' =0 1.(C)=0
2. ( x a ) ′ = a x a − 1 2.\qquad{\left( x^{a} \right)}'=ax^{a-1} 2.(xa)=axa1
3. ( e x ) ′ = e x 3.\qquad{\left( e^{x} \right)}'=e^{x} 3.(ex)=ex
4. ( ln ⁡ x ) ′ = 1 x 4.\qquad{\left(\ln x \right)}'=\frac{1}{x} 4.(lnx)=x1
5. ( sin ⁡ x ) ′ = cos ⁡ x 正弦的导数等于余弦 5.\qquad \begin{array}{} (\sin x)'=\cos x\\ 正弦的导数等于余弦 \end{array} 5.(sinx)=cosx正弦的导数等于余弦
6. ( cos ⁡ x ) ′ = − sin ⁡ x 余弦的导数等于负的正弦 6.\qquad \begin{array}{} (\cos x)'=-\sin x\\ 余弦的导数等于负的正弦 \end{array} 6.(cosx)=sinx余弦的导数等于负的正弦
7. ( tan ⁡ x ) ′ = sec ⁡ 2 x 正切的导数等于正割的平方 7.\qquad \begin{array}{} (\tan x)'=\sec^2x\\ 正切的导数等于正割的平方 \end{array} 7.(tanx)=sec2x正切的导数等于正割的平方
8. ( cot ⁡ x ) ′ = − csc ⁡ 2 x 余切的导数等于负的余割的平方 8.\qquad \begin{array}{} (\cot x)'=-\csc^2x\\余切的导数等于负的余割的平方 \end{array} 8.(cotx)=csc2x余切的导数等于负的余割的平方
9. ( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x 正割的导数等于正割乘正切 9.\qquad \begin{array}{} (\sec x)'=\sec x\tan x\\正割的导数等于正割乘正切 \end{array} 9.(secx)=secxtanx正割的导数等于正割乘正切
10. ( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x 余割的导数负的余割乘余切 10.\qquad \begin{array}{} (\csc x)'=-\csc x\cot x\\余割的导数负的余割乘余切 \end{array} 10.(cscx)=cscxcotx余割的导数负的余割乘余切
11. ( arctan ⁡ x ) ′ = 1 1 + x 2 11.\qquad(\arctan x)'=\frac{1}{1+x^2} 11.(arctanx)=1+x21
tan ⁡ a = x a r c tan ⁡ x = a ( arctan ⁡ x ) ′ = 1 2 ( 1 + x 2 ) 2 = 1 1 + x 2 \begin{array}{} \tan a=x\\arc\tan x=a\\(\arctan x)'=\frac{1^2}{(\sqrt{ 1+x^2 })^2}=\frac{1}{1+x^2} \end{array} tana=xarctanx=a(arctanx)=(1+x2 )212=1+x21
![[Pasted image 20240305151556.png]]

12. ( a r c c o t x ) ′ = − 1 1 + x 2 12.\qquad(arccot x)'=-\frac{1}{1+x^2} 12.(arccotx)=1+x21
13. ( arcsin ⁡ x ) ′ = 1 1 − x 2 13.\qquad(\arcsin x)'=\frac{1}{\sqrt{ 1-x^2 }} 13.(arcsinx)=1x2 1
14. ( arccos ⁡ x ) ′ = − 1 1 − x 2 14.\qquad(\arccos x)'=-\frac{1}{\sqrt{ 1-x^2 }} 14.(arccosx)=1x2 1
15. ( a x ) ′ = a x ⋅ ln ⁡ a 15.\qquad(a^x)'=a^x\cdot \ln a 15.(ax)=axlna
16. ( log ⁡ a x ) ′ = 1 x ln ⁡ a 16.\qquad(\log_{a}^{x})'=\frac{1}{x\ln a} 16.(logax)=xlna1
公式要求
1. 记忆
2. 推导
1. 基本求导公式 用极限推导
2. 拓展求导公式 用求导法则推导
3. 倒背如流 为求积分服务

	(常)'=0
	(幂)'=幂
	(指)'=指
	(对)'=幂
	(三角)'=三角
	(反三角)'=幂

求导法则
所有的函数都能由基本的初等函数通过三种运算法则泛化而成
四则运算法则

设函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x)均可导,则
KaTeX parse error: Undefined control sequence: \displaylines at position 2: \̲d̲i̲s̲p̲l̲a̲y̲l̲i̲n̲e̲s̲{ [f(x)\pm g(x)…

推导公式
1. ( tan ⁡ x ) ′ = ( sin ⁡ x cos ⁡ x ) ′ = ( sin ⁡ x ) ′ cos ⁡ x − sin ⁡ x ( cos ⁡ x ) ′ cos ⁡ 2 x = cos ⁡ x ⋅ cos ⁡ x − sin ⁡ x ⋅ ( − sin ⁡ x ) cos ⁡ x ⋅ cos ⁡ x = cos ⁡ 2 x + sin ⁡ 2 x cos ⁡ 2 x = 1 cos ⁡ 2 x = sec ⁡ 2 x 1.\qquad \begin{array}{} (\tan x)^{\prime}=\left(\frac{\sin x}{\cos x}\right)^{\prime}=\frac{(\sin x)^{\prime} \cos x-\sin x(\cos x)^{\prime}}{\cos ^{2} x} \\ =\frac{\cos x \cdot \cos x-\sin x \cdot(-\sin x)}{\cos x \cdot \cos x} \\ =\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}=\sec ^{2} x \\ \end{array} 1.(tanx)=(cosxsinx)=cos2x(sinx)cosxsinx(cosx)=cosxcosxcosxcosxsinx(sinx)=cos2xcos2x+sin2x=cos2x1=sec2x
2. ( cot ⁡ x ) ′ = ( cos ⁡ x sin ⁡ x ) ′ = ( cos ⁡ x ) ′ sin ⁡ x − cos ⁡ x ( sin ⁡ x ) ′ sin ⁡ 2 x = − sin ⁡ x ⋅ sin ⁡ x − cos ⁡ x ⋅ ( cos ⁡ x ) sin ⁡ x ⋅ sin ⁡ x = − sin ⁡ 2 x − cos ⁡ 2 x sin ⁡ 2 x = − 1 sin ⁡ 2 x = − csc ⁡ 2 x 2.\qquad \begin{array}{} (\cot x)^{\prime}=\left(\frac{\cos x}{\sin x}\right)^{\prime}=\frac{(\cos x)^{\prime} \sin x-\cos x(\sin x)^{\prime}}{\sin ^{2} x} \\ =\frac{-\sin x \cdot \sin x-\cos x \cdot(\cos x)}{\sin x \cdot \sin x} \\ =\frac{-\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x}=-\frac{1}{\sin ^{2} x}=-\csc ^{2} x \\ \end{array} 2.(cotx)=(sinxcosx)=sin2x(cosx)sinxcosx(sinx)=sinxsinxsinxsinxcosx(cosx)=sin2xsin2xcos2x=sin2x1=csc2x
3. ( sec ⁡ x ) ′ = ( 1 cos ⁡ x ) ′ = ( 1 ) ′ ⋅ cos ⁡ x − 1 ⋅ ( cos ⁡ x ) ′ cos ⁡ 2 x = 0 ⋅ cos ⁡ x − 1 ⋅ ( − sin ⁡ x ) cos ⁡ x ⋅ cos ⁡ x = sin ⁡ x cos ⁡ 2 x = sin ⁡ x cos ⁡ x 1 cos ⁡ x = sec ⁡ x ⋅ tan ⁡ x 3.\qquad \begin{array}{} (\sec x)^{\prime}=\left(\frac{1}{\cos x}\right)^{\prime}=\frac{(1)^{\prime} \cdot \cos x-1 \cdot(\cos x)^{\prime}}{\cos ^{2} x} \\ =\frac{0 \cdot \cos x-1 \cdot(-\sin x)}{\cos x \cdot \cos x} \\ =\frac{\sin x}{\cos ^{2} x}=\frac{\sin x}{\cos x} \frac{1}{\cos x}=\sec x \cdot \tan x \\ \end{array} 3.(secx)=(cosx1)=cos2x(1)cosx1(cosx)=cosxcosx0cosx1(sinx)=cos2xsinx=cosxsinxcosx1=secxtanx
4. ( csc ⁡ x ) ′ = ( 1 sin ⁡ x ) ′ = ( 1 ) ′ ⋅ sin ⁡ x − 1 ⋅ ( sin ⁡ x ) ′ sin ⁡ 2 x = 0 ⋅ sin ⁡ x − 1 ⋅ ( cos ⁡ x ) sin ⁡ x ⋅ sin ⁡ x = − cos ⁡ x sin ⁡ 2 x = − cos ⁡ x sin ⁡ x 1 sin ⁡ x = − csc ⁡ x ⋅ cot ⁡ x 4.\qquad \begin{array}{} (\csc x)^{\prime}=\left(\frac{1}{\sin x}\right)^{\prime}=\frac{(1)^{\prime} \cdot \sin x-1 \cdot(\sin x)^{\prime}}{\sin ^{2} x} \\ =\frac{0 \cdot \sin x-1 \cdot(\cos x)}{\sin x \cdot \sin x} \\ =\frac{-\cos x}{\sin ^{2} x}=-\frac{\cos x}{\sin x} \frac{1}{\sin x}=-\csc x \cdot \cot x \\ \end{array} 4.(cscx)=(sinx1)=sin2x(1)sinx1(sinx)=sinxsinx0sinx1(cosx)=sin2xcosx=sinxcosxsinx1=cscxcotx

复合函数求导法则
定理:设 y = f ( u ) , u = g ( x ) y=f(u),u=g(x) y=f(u),u=g(x) ,如果 g ( x ) g(x) g(x) x x x处可导,且 f ( u ) f(u) f(u)在对应的 u = g ( x ) u=g(x) u=g(x)处可导,则复合函数 y = f ( g ( x ) ) y=f(g(x)) y=f(g(x)) x x x处可导,且有:
[ f ( g ( x ) ) ] ′ = f ′ ( g ( x ) ) g ′ ( x ) 或 d y d x = d y d u d u d x [f(g(x))]'=f'(g(x))g'(x)或\frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx} [f(g(x))]=f(g(x))g(x)dxdy=dudydxdu

分层
分层的依据是能出现在16个求导公式当中
外层求导内层不动,内层求导内内层不动,直至最内一层(16个中1个)

推导公式
e ln ⁡ f ( x ) = f ( x ) e^{\ln f(x)}=f(x) elnf(x)=f(x)
ln ⁡ a + ln ⁡ b = ln ⁡ a b \ln a+\ln b=\ln ab lna+lnb=lnab
k ln ⁡ a = ln ⁡ a k k\ln a=\ln a^k klna=lnak
( a x ) ′ = ( e x ln ⁡ a ) ′ = e x ln ⁡ a ⋅ ( x ln ⁡ a ) ′ = e x ln ⁡ a ⋅ ln ⁡ a = a x ⋅ ln ⁡ a (a^x)'=(e^{x\ln a})'=e^{x\ln a}\cdot(x\ln a)'=e^{x\ln a}\cdot \ln a=a^x\cdot \ln a (ax)=(exlna)=exlna(xlna)=exlnalna=axlna
例1
f ( x ) = ln ⁡ ( x + 1 + x 2 ) f(x)=\ln(x+\sqrt{ 1+x^2 }) f(x)=ln(x+1+x2 )
f ′ ( x ) = ( x + 1 + x 2 ) ′ x + 1 + x 2 = 1 + x 1 + x 2 x + 1 + x 2 = 1 + x 2 + x 1 + x 2 x + 1 + x 2 = 1 1 + x 2 f'(x)=\frac{(x+\sqrt{ 1+x^2 })'}{x+\sqrt{ 1+x^2 }}=\frac{1+\frac{x}{\sqrt{ 1+x^2 }}}{x+\sqrt{ 1+x^2 }}=\frac{\frac{\sqrt{ 1+x^2 }+x}{\sqrt{ 1+x^2 }}}{x+\sqrt{ 1+x^2 }}=\frac{1}{\sqrt{ 1+x^2 }} f(x)=x+1+x2 (x+1+x2 )=x+1+x2 1+1+x2 x=x+1+x2 1+x2 1+x2 +x=1+x2 1
( 1 + x 2 ) ′ = ( ( 1 + x 2 ) 1 2 ) ′ = 1 2 ( 1 + x 2 ) − 1 2 ⋅ ( 1 + x 2 ) ′ = 1 2 ( 1 + x 2 ) − 1 2 ⋅ 2 x = x 1 + x 2 \begin{array}{} (\sqrt{ 1+x^2 })'=((1+x^2)^{\frac{1}{2}})'=\frac{1}{2}(1+x^2)^{-\frac{1}{2}}\cdot(1+x^2)'\\ =\frac{1}{2}(1+x^2)^{-\frac{1}{2}}\cdot2x=\frac{x}{\sqrt{ 1+x^2 }} \end{array} (1+x2 )=((1+x2)21)=21(1+x2)21(1+x2)=21(1+x2)212x=1+x2 x
例2
f ( x ) = ln ⁡ ( csc ⁡ x − cot ⁡ x ) ( 0 < x < π 2 ) f(x)=\ln(\csc x-\cot x)(0<x<\frac{\pi}{2}) f(x)=ln(cscxcotx)(0<x<2π)
f ′ ( x ) = ( csc ⁡ x − cot ⁡ x ) ′ csc ⁡ x − cot ⁡ x = − csc ⁡ x cot ⁡ x − ( − csc ⁡ 2 x ) csc ⁡ x − cot ⁡ x = csc ⁡ x ( − cot ⁡ x + csc ⁡ x ) csc ⁡ x − cot ⁡ x = csc ⁡ x \begin{array}{} f'(x)=\frac{(\csc x-\cot x)'}{\csc x-\cot x}=\frac{-\csc x\cot x-(-\csc^2x)}{\csc x-\cot x}\\ =\frac{\csc x(-\cot x+\csc x)}{\csc x-\cot x}=\csc x \end{array} f(x)=cscxcotx(cscxcotx)=cscxcotxcscxcotx(csc2x)=cscxcotxcscx(cotx+cscx)=cscx
例3
f ( x ) = ln ⁡ ( sec ⁡ x − tan ⁡ x ) ( 0 < x < π 2 ) f(x)=\ln(\sec x-\tan x)(0<x<\frac{\pi}{2}) f(x)=ln(secxtanx)(0<x<2π)
f ′ ( x ) = ( sec ⁡ x − tan ⁡ x ) ′ sec ⁡ x − tan ⁡ x = − sec ⁡ x tan ⁡ x − ( − sec ⁡ 2 x ) sec ⁡ x − tan ⁡ x = sec ⁡ x ( − tan ⁡ x + sec ⁡ x ) sec ⁡ x − tan ⁡ x = sec ⁡ x \begin{array}{} f'(x)=\frac{(\sec x-\tan x)'}{\sec x-\tan x}=\frac{-\sec x\tan x-(-\sec^2x)}{\sec x-\tan x}\\ =\frac{\sec x(-\tan x+\sec x)}{\sec x-\tan x}=\sec x \end{array} f(x)=secxtanx(secxtanx)=secxtanxsecxtanx(sec2x)=secxtanxsecx(tanx+secx)=secx

反函数求导法则
取倒数
定理:设函数 f ( x ) f(x) f(x)可导且 f ′ ( x ) ≠ 0 f'(x)\ne0 f(x)=0,其反函数为 x = f − 1 ( y ) x=f^{-1}(y) x=f1(y),则
( f − 1 ( y ) ) ′ = d x d y = 1 d y d x = 1 f ′ ( x ) = 1 f ′ ( f − 1 ( y ) ) (f^{-1}(y))'=\frac{dx}{dy}=\frac{1}{\frac{dy}{dx}}=\frac{1}{f'(x)}=\frac{1}{f'(f^{-1}(y))} (f1(y))=dydx=dxdy1=f(x)1=f(f1(y))1

推导公式
( arcsin ⁡ x ) ′ = 1 ( sin ⁡ y ) ′ = 1 cos ⁡ y = 1 1 − x 2 y = arcsin ⁡ x 原函数 : x = sin ⁡ y cos ⁡ y = 1 − sin ⁡ 2 y = 1 − x 2 ( arccos ⁡ x ) ′ = 1 ( cos ⁡ y ) ′ = − 1 sin ⁡ y = − 1 1 − x 2 y = arccos ⁡ x 原函数 : x = cos ⁡ y sin ⁡ y = 1 − cos ⁡ 2 y = 1 − x 2 ( arctan ⁡ x ) ′ = 1 ( tan ⁡ y ) ′ = 1 sec ⁡ 2 y = 1 1 + x 2 y = arctan ⁡ x 原函数 : x = tan ⁡ y sec ⁡ 2 y = 1 + tan ⁡ 2 y = 1 + x 2 ( arccot ⁡ x ) ′ = 1 ( cot ⁡ y ) ′ = − 1 csc ⁡ 2 y = − 1 1 + x 2 y = arccot ⁡ x 原函数 : x = cot ⁡ y csc ⁡ 2 y = 1 + cot ⁡ 2 y = 1 + x 2 \begin{array}{} (\arcsin x)^{\prime}=\frac{1}{(\sin y)^{\prime}}=\frac{1}{\cos y}=\frac{1}{\sqrt{1-x^{2}}}\\ y=\arcsin x {\qquad} 原函数: x=\sin y\\ \cos y=\sqrt{1-\sin ^{2} y}=\sqrt{1-x^{2}} \\ (\arccos x)^{\prime}=\frac{1}{(\cos y)^{\prime}}=-\frac{1}{\sin y}=-\frac{1}{\sqrt{1-x^{2}}}\\ y=\arccos x {\qquad}原函数: x=\cos y\\ \sin y=\sqrt{1-\cos ^{2} y}=\sqrt{1-x^{2}} \\ (\arctan x)^{\prime}=\frac{1}{(\tan y)^{\prime}}=\frac{1}{\sec ^{2} y}=\frac{1}{1+x^{2}}\\ y=\arctan x {\qquad}原函数: x=\tan y\\ \sec ^{2} y=1+\tan ^{2} y=1+x^{2} \\ (\operatorname{arccot} x)^{\prime}=\frac{1}{(\cot y)^{\prime}}=-\frac{1}{\csc ^{2} y}=-\frac{1}{1+x^{2}}\\ y=\operatorname{arccot} x {\qquad}原函数: x=\cot y \\ \csc ^{2} y=1+\cot ^{2} y=1+x^{2}\\ \end{array} (arcsinx)=(siny)1=cosy1=1x2 1y=arcsinx原函数:x=sinycosy=1sin2y =1x2 (arccosx)=(cosy)1=siny1=1x2 1y=arccosx原函数:x=cosysiny=1cos2y =1x2 (arctanx)=(tany)1=sec2y1=1+x21y=arctanx原函数:x=tanysec2y=1+tan2y=1+x2(arccotx)=(coty)1=csc2y1=1+x21y=arccotx原函数:x=cotycsc2y=1+cot2y=1+x2
常考题型

幂指函数求导
形如 f ( x ) = u ( x ) v ( x ) f(x)=u(x)^{v(x)} f(x)=u(x)v(x)的函数,其中 u ( x ) u(x) u(x) v ( x ) v(x) v(x)均不为常数,称为幂指函数,对幂指函数的处理方式是进行对数恒等变形:
f ( x ) = u ( x ) v ( x ) = e v ( x ) ln ⁡ u ( x ) f(x)=u(x)^{v(x)}=e^{v(x)\ln u(x)} f(x)=u(x)v(x)=ev(x)lnu(x)

幂函数:底数为变量,指数为常量
指数函数,底数为常量,指数为变量
幂指函数,底数为变量,指数为变量

例1
e ln ⁡ x = x , ln ⁡ x k = k ln ⁡ x , ln ⁡ x + ln ⁡ y = ln ⁡ x y e^{\ln x}=x,\qquad\ln x^k=k\ln x,\qquad\ln x+\ln y=\ln xy elnx=x,lnxk=klnx,lnx+lny=lnxy
x x = e ln ⁡ x x = e x ln ⁡ x x^x=e^{\ln x^x}=e^{x\ln x} xx=elnxx=exlnx
( x x ) ′ = ( e x ln ⁡ x ) ′ = e x ln ⁡ x ⋅ ( ln ⁡ x + x ⋅ 1 x ) = x x ( ln ⁡ x + 1 ) (x^x)'=(e^{x\ln x})'=e^{x\ln x}\cdot(\ln x+x\cdot\frac{1}{x})=x^x(\ln x+1) (xx)=(exlnx)=exlnx(lnx+xx1)=xx(lnx+1)
例2
f ( x ) = ( x x ) x + x x x ( x x ) x = e ln ⁡ ( x x ) x = e x ln ⁡ ( x x ) = e x ⋅ x ln ⁡ x = e x 2 ln ⁡ x \begin{array}{} f(x)=(x^x)^x+x^{x^x}\\ (x^x)^x=e^{\ln(x^x)^x}=e^{x\ln(x^x)}=e^{x\cdot x\ln x}=e^{x^2\ln x}\\ \end{array} f(x)=(xx)x+xxx(xx)x=eln(xx)x=exln(xx)=exxlnx=ex2lnx
( ( x x ) x ) ′ = ( e x 2 ln ⁡ x ) ′ = e x 2 ln ⁡ x ( 2 x ln ⁡ x + x 2 ⋅ 1 x ) = ( x x ) x ⋅ x ( 2 ln ⁡ x + 1 ) \begin{array}{} ((x^x)^x)'=(e^{x^2\ln x})'=e^{x^2\ln x}(2x\ln x+x^2\cdot\frac{1}{x})\\ =(x^x)^x\cdot x(2\ln x+1) \end{array} ((xx)x)=(ex2lnx)=ex2lnx(2xlnx+x2x1)=(xx)xx(2lnx+1)
( x x x ) ′ = ( ( x ) x x ) ′ = ( e ln ⁡ ( x ) x x ) ′ = ( e x x ln ⁡ x ) ′ = e x x ln ⁡ x ( x x ⋅ 1 x + ( x x ) ′ ln ⁡ x ) = e x x ln ⁡ x ( x x ⋅ x − 1 + ln ⁡ x ⋅ x x ( ln ⁡ x + 1 ) ) = x x x ( x x − 1 + x x ( ln ⁡ 2 x + ln ⁡ x ) ) \begin{array}{} (x^{x^x})'=((x)^{x^x})'=(e^{\ln (x)^{x^x}})'=(e^{x^x\ln x})'\\ =e^{x^x\ln x}(x^x\cdot\frac{1}{x}+(x^x)'\ln x)=e^{x^x\ln x}(x^x\cdot x^{-1}+\ln x\cdot x^x(\ln x+1))\\ =x^{x^x}(x^{x-1}+x^x(\ln^2x+\ln x))\\ \end{array} (xxx)=((x)xx)=(eln(x)xx)=(exxlnx)=exxlnx(xxx1+(xx)lnx)=exxlnx(xxx1+lnxxx(lnx+1))=xxx(xx1+xx(ln2x+lnx))
f ′ ( x ) = ( x x ) x ⋅ x ( 2 ln ⁡ x + 1 ) + x x x ( x x − 1 + x x ( ln ⁡ 2 x + ln ⁡ x ) ) f'(x)=(x^x)^x\cdot x(2\ln x+1)+x^{x^x}(x^{x-1}+x^x(\ln^2x+\ln x)) f(x)=(xx)xx(2lnx+1)+xxx(xx1+xx(ln2x+lnx))

隐函数求导
设函数 y = f ( x ) y=f(x) y=f(x) 是由方程 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0 所确定的隐函数,要计算 y ′ y' y ,则在方程 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0 两边同时对 x x x 求导,再解方程即可得到 y ′ y' y.
【注】 y y y 要看成 x x x 的函数 f ( x ) f(x) f(x) ,再运用复合函数求导法则求导

例1
参数方程求导
( 1 ) 参数方程的一阶导数 设 { x = x ( t ) y = y ( t ) ,则 d y d x = d y d t ⋅ d t d x = d y d t / d x d t = y ′ ( t ) x ′ ( t ) ( 2 ) 参数方程的二阶导数 d 2 y d x 2 = d d t ( d y d x ) / d x d t \begin{array}{} (1)\qquad参数方程的一阶导数\\ 设\left\{\begin{matrix} x=x(t) \\ y=y(t) \end{matrix}\right. ,则\frac{dy}{dx}=\frac{dy}{dt}\cdot\frac{dt}{dx}=\frac{dy}{dt}/\frac{dx}{dt}=\frac{y'(t)}{x'(t)}\\ (2)\qquad参数方程的二阶导数\\ \frac{d^2y}{dx^2}=\frac{d}{dt}(\frac{dy}{dx})/\frac{dx}{dt} \end{array} (1)参数方程的一阶导数{x=x(t)y=y(t),则dxdy=dtdydxdt=dtdy/dtdx=x(t)y(t)(2)参数方程的二阶导数dx2d2y=dtd(dxdy)/dtdx
例1
{ x = 2 cos ⁡ 4 t y = 2 sin ⁡ 4 t , ( 0 < t < π 2 ) \begin{cases} x=2\cos^4t \\ y=2\sin^4t \end{cases},(0<t<\frac{\pi}{2}) {x=2cos4ty=2sin4t,(0<t<2π)
d y d x = y ′ ( t ) x ′ ( t ) = ( 2 sin ⁡ 4 t ) ′ ( 2 cos ⁡ 4 t ) ′ = 8 sin ⁡ 3 t ⋅ cos ⁡ t 8 cos ⁡ 3 t ⋅ ( − sin ⁡ t ) = − tan ⁡ 2 t \frac{dy}{dx}=\frac{y'(t)}{x'(t)}=\frac{(2\sin^4t)'}{(2\cos^4t)'}=\frac{8\sin^3t\cdot \cos t}{8\cos^3t\cdot(-\sin t)}=-\tan^2t dxdy=x(t)y(t)=(2cos4t)(2sin4t)=8cos3t(sint)8sin3tcost=tan2t
d 2 y d x 2 = d ( d y d x ) d x = d ( − tan ⁡ 2 t ) d x = d ( − tan ⁡ 2 t ) d t ⋅ 1 d x d t = − 2 tan ⁡ t sec ⁡ 2 t 1 8 cos ⁡ 3 t ( − sin ⁡ t ) = 1 4 cos ⁡ 6 t \begin{array}{} \frac{d^2y}{dx^2}=\frac{d(\frac{dy}{dx})}{dx}=\frac{d(-\tan^2t)}{dx}=\frac{d(-\tan^2t)}{dt}\cdot\frac{1}{\frac{dx}{dt}}\\ =-2\tan t\sec ^2t\frac{1}{8\cos^3t(-\sin t)}=\frac{1}{4\cos^6t} \end{array} dx2d2y=dxd(dxdy)=dxd(tan2t)=dtd(tan2t)dtdx1=2tantsec2t8cos3t(sint)1=4cos6t1
例2
{ x = ln ⁡ 3 1 − t 2 y = arcsin ⁡ t , ( 0 < t < 1 ) \begin{cases} x=\ln^3\sqrt{ 1-t^2 } \\ y=\arcsin t \end{cases},(0<t<1) {x=ln31t2 y=arcsint,(0<t<1)
d y d x = y ′ ( t ) x ′ ( t ) = ( arcsin ⁡ t ) ′ ( ln ⁡ 3 1 − t 2 ) ′ = 1 1 − t 2 1 3 − 2 t 1 − t 2 = − 3 1 − t 2 2 t \frac{dy}{dx}=\frac{y'(t)}{x'(t)}=\frac{(\arcsin t)'}{(\ln^3\sqrt{ 1-t^2 })'}=\frac{\frac{1}{\sqrt{ 1-t^2 }}}{\frac{1}{3}\frac{-2t}{1-t^2}}=-\frac{3\sqrt{ 1-t^2 }}{2t} dxdy=x(t)y(t)=(ln31t2 )(arcsint)=311t22t1t2 1=2t31t2
d 2 y d x 2 = d ( − 3 1 − t 2 2 t ) d t 1 d x d t = − 3 2 ( − 2 t 2 1 − t 2 ⋅ t − 1 − t 2 t 2 ) ⋅ 1 1 3 − 2 t 1 − t 2 = 9 4 ( − t 2 ) 1 − t 2 − 1 − t 2 ( 1 − t 2 ) t 3 = 9 4 1 − t 2 − 1 t 3 = − 9 4 1 − t 2 t 3 \begin{array}{} \frac{d^2y}{dx^2}=\frac{d(-\frac{3\sqrt{ 1-t^2 }}{2t})}{dt}\frac{1}{\frac{dx}{dt}}=-\frac{3}{2}(\frac{\frac{-2t}{2\sqrt{ 1-t^2 }}\cdot t-\sqrt{ 1-t^2 }}{t^2})\cdot\frac{1}{\frac{1}{3}\frac{-2t}{1-t^2}}\\ =\frac{9}{4}\frac{(-t^2)\sqrt{ 1-t^2 }-\sqrt{ 1-t^2 }(1-t^2)}{t^3}\\ =\frac{9}{4}\sqrt{ 1-t^2 }\frac{-1}{t^3}=-\frac{9}{4}\frac{\sqrt{ 1-t^2 }}{t^3} \end{array} dx2d2y=dtd(2t31t2 )dtdx1=23(t221t2 2tt1t2 )311t22t1=49t3(t2)1t2 1t2 (1t2)=491t2 t31=49t31t2

抽象函数
不给出具体解析式,只给出函数的特殊条件或特征的函数即抽象函数

例1
y = a x f ( ln ⁡ x ) , ( a > 0 且 a ≠ 1 ) y=a^xf(\ln x),(a>0且a \ne 1) y=axf(lnx),(a>0a=1)
d y d x = a x ⋅ ln ⁡ a ⋅ f ( ln ⁡ x ) + a x ⋅ ( f ( ln ⁡ x ) ) ′ = ln ⁡ a ⋅ a x ⋅ f ( ln ⁡ x ) + a x ⋅ f ′ ( ln ⁡ x ) ⋅ ( ln ⁡ x ) ′ = ln ⁡ a ⋅ a x f ( ln ⁡ x ) + a x ⋅ 1 x f ′ ( ln ⁡ x ) \begin{array}{} \frac{dy}{dx}=a^x\cdot \ln a\cdot f(\ln x)+a^x\cdot(f(\ln x))'\\ =\ln a\cdot a^x\cdot f(\ln x)+a^x\cdot f'(\ln x)\cdot(\ln x)'\\ =\ln a\cdot a^xf(\ln x)+a^x\cdot\frac{1}{x}f'(\ln x) \end{array} dxdy=axlnaf(lnx)+ax(f(lnx))=lnaaxf(lnx)+axf(lnx)(lnx)=lnaaxf(lnx)+axx1f(lnx)

f ( x ) = sin ⁡ x f ′ ( x ) = cos ⁡ x ( f ( x 2 ) ) ′ = ( sin ⁡ x 2 ) ′ = 2 x cos ⁡ x 2 f ′ ( x 2 ) = cos ⁡ x 2 \begin{array}{} f(x)=\sin x\\ f'(x)=\cos x\\ (f(x^2))'=(\sin x^2)'=2x\cos x^2\\ f'(x^2)=\cos x^2 \end{array} f(x)=sinxf(x)=cosx(f(x2))=(sinx2)=2xcosx2f(x2)=cosx2
例2
y = f ( x + y ) d y d x = f ′ ( x + y ) ⋅ ( 1 + d y d x ) = f ′ ( x + y ) 1 − f ′ ( x + y ) d 2 y d x 2 = f ′ ′ ( x + y ) ⋅ ( 1 + d y d x ) ( 1 + d y d x ) + f ′ ( x + y ) ( d 2 y d x 2 ) = f ′ ′ ( x + y ) ( 1 + d y d x ) 2 1 − f ′ ( x + y ) = f ′ ′ 1 ( 1 − f ′ ) 2 1 − f ′ = f ′ ′ ( 1 − f ′ ) 3 \begin{array}{} y=f(x+y)\\ \frac{dy}{dx}=f'(x+y)\cdot(1+\frac{dy}{dx})=\frac{f'(x+y)}{1-f'(x+y)}\\ \frac{d^2y}{dx^2}=f''(x+y)\cdot(1+\frac{dy}{dx})(1+\frac{dy}{dx})+f'(x+y)(\frac{d^2y}{dx^2})\\ =\frac{f''(x+y)(1+\frac{dy}{dx})^2}{1-f'(x+y)}=\frac{f''\frac{1}{(1-f')^2}}{1-f'}=\frac{f''}{(1-f')^3} \end{array} y=f(x+y)dxdy=f(x+y)(1+dxdy)=1f(x+y)f(x+y)dx2d2y=f′′(x+y)(1+dxdy)(1+dxdy)+f(x+y)(dx2d2y)=1f(x+y)f′′(x+y)(1+dxdy)2=1ff′′(1f)21=(1f)3f′′

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值