# 无向图的边双连通分量（FROM Redundant Paths POJ - 3177 ）

In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only travel on Official Paths when they move from one field to another.

Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.

There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.
Input
Line 1: Two space-separated integers: F and R

Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.
Output
Line 1: A single integer that is the number of new paths that must be built.
Sample Input
7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7
Sample Output
2

import java.util.Arrays;
import java.util.Scanner;
public class Main
{
static int SIZE=5005;
static int head[]=new int[SIZE],to[]=new int[20005],next[]=new int[20005];
static int cnt=0;
{
}//以上建图需要
static int dfn[]=new int[SIZE],low[]=new int[SIZE];
static int index;
static boolean bridge[]=new boolean[SIZE<<1];
static void tarjan(int x,int edge)
{
dfn[x]=low[x]=++index;
{
int y=to[i];
if(dfn[y]==0)
{
tarjan(y,i);
low[x]=Math.min(low[x], low[y]);
if(dfn[x]<low[y])
bridge[i]=bridge[i^1]=true;
}
else
if(i!=(edge^1))
low[x]=Math.min(low[x], dfn[y]);

}
}//以上找桥的需要
static void init()
{
//比如0,1是一对 2,3是一对，只要对每个值和1异或一下，就能找到对应的反向边
cnt=0;
}
static int n,m;
static int be[]=new int[SIZE];//给每个点标记是属于哪个连通分量
static int deg[]=new int[SIZE];//统计缩点以后的的图（树）中的点的度数
static int count=0;
static void dfs(int x)
{
be[x]=count;
{
int y=to[i];
if(bridge[i]||be[y]!=0)
continue;
dfs(y);
}
}
static int work()
{
count=0;
for(int i=1;i<=n;i++)
if(be[i]==0)
{
++count;
dfs(i);//给每个点打上标记
}
Arrays.fill(deg, 0);
for(int i=1;i<cnt;i+=2)
{
if(bridge[i])//然后统计缩点之后每个点的度数
{
deg[be[to[i]]]++;
deg[be[to[i^1]]]++;
}
}
int ans=0;
for(int i=1;i<=count;i++)
if(deg[i]==1)ans++;
return (ans+1)/2;

}
public static void main(String[] args)
{
Scanner sc=new Scanner(System.in);
n=sc.nextInt();
m=sc.nextInt();
init();
for(int i=0;i<m;i++)
tarjan(1,-1);//因为是连通的，所以直接dfs一次所有的点都可以访问到
System.out.println(work());
}
}

• 广告
• 抄袭
• 版权
• 政治
• 色情
• 无意义
• 其他

120