傅里叶变换及相关(自用笔记)

##1. 傅里叶正变换 (FT)
实际应用例子:

音频处理 - 通过傅里叶变换,我们可以看到音频信号在不同频率下的强度,用这些信息我们可以进行滤波、均衡等操作。

通信 - 在无线通信中,傅里叶变换被用来调制和解调信号,也就是将信号从时间域转到频率域,或者从频率域转到时间域。

图像处理 - 在图像处理中,傅里叶变换可以用来分析图像的频率内容,进行滤波、压缩等操作。

傅里叶变换把一个时间域信号转换成一个频率域信号。它表明任何复杂的信号都可以被分解成一系列简单的正弦波和余弦波的叠加。
X ( f ) = ∫ − ∞ ∞ x ( t ) e − j 2 π f t d t X(f) = \int_{-\infty}^{\infty} x(t) e^{-j2\pi f t} dt X(f)=x(t)ej2πftdt
其中:

  • X ( f ) X(f) X(f)是频率域的信号
  • x ( t ) x(t) x(t)是时间域的信号
  • f f f是频率(单位Hz)
  • j j j是虚数单位

物理含义: 傅里叶变换让我们能够看到信号在不同频率下的成分。这样,我们就可以了解信号的频率特性,例如它的主频、谐波等。

Note: ω \omega ω表示角频率,单位是rad/s,频率 f f f和角频率 ω \omega ω的关系有: ω = 2 π f \omega=2\pi f ω=2πf,因此,可以得到
F ( ω ) = ∫ − ∞ + ∞ x ( t ) e − j ω t d t F(\omega)=\int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt F(ω)=+x(t)etdt

2. 傅里叶反变换 (IFT)

傅里叶反变换是傅里叶变换的逆过程,它将频率域信号转换回时间域

数学表示:

x ( t ) = ∫ − ∞ ∞ X ( f ) e j 2 π f t d f x(t) = \int_{-\infty}^{\infty} X(f) e^{j2\pi f t} df x(t)=X(f)ej2πftdf
Note: 根据上面角频率 ω \omega ω和频率 f f f的关系,有 d f = 1 2 π d ω df=\frac{1}{2\pi}d\omega df=2π1dω,所以有
x ( t ) = 1 2 π ∫ − ∞ ∞ F ( ω ) e j ω t d ω x(t) =\frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega x(t)=2π1F(ω)etdω

物理含义:傅里叶反变换帮助我们把在频率域中处理后的信号转回到时间域,这样我们就可以在原始的时间域中观察到信号经过处理后的变化。

3. 能量守恒

在讨论傅里叶变换中的能量守恒时,我们通常指的是在时域和频域之间转换时,信号的总能量保持不变。这个原则被称为帕塞瓦尔定理 (Parseval’s theorem),它表明信号的时域中平方的和 (能量) 等于其频域中平方的和。对于离散傅里叶变换 (DFT),这个定理可以用如下方式表达:
∑ n − 0 N − 1 ∣ x [ n ] ∣ 2 = 1 N ∑ k − 0 N − 1 ∣ X [ k ] ∣ 2 \sum_{n-0}^{N-1}|x[n]|^2=\frac{1}{N} \sum_{k-0}^{N-1}|X[k]|^2 n0N1x[n]2=N1k0N1X[k]2

左侧是时域信号的能量,而右侧是频域信号的能量。注意右侧有一个 1 / N 1 / N 1/N 的系数。

在DFT操作中,我们通常不在变换过程中包括 1 / N 1 / N 1/N 因子,而是在执行逆变换 (IDFT)时包括它。这样做的原因是,在DFT中,每个频率成分 X [ k ] X[k] X[k] 是所有时域样本 x [ n ] x[n] x[n] 的贡献的总和。如果直接在DFT过程中包括 1 / N 1 / N 1/N ,那么每个 X [ k ] X[k] X[k] 的幅度将会是实际幅度的 1 / N 1 / N 1/N ,这可能不便于分析频域特性。然而,在执行IDFT时,我们需要这个因子来确保每个 x [ n ] x[n] x[n] 是原始幅度,这样就能确保能量守恒,即时域信号的能量等于频域信号的能量。

乘以 1 / N 1 / N 1/N 确保了这种能量守恒,因为它将DFT输出的幅度按比例缩小,使得送变换能够正确地重构原始信号的幅度水平。如果不这样做,那么在IDFT过程中,信号的能量将会被放大 N N N 倍,这将违反能量守恒的原则。

快速傅里叶变换 (FFT) 后乘以 1 / N 1 / N 1/N 的原因与傅里叶变换的定义和能量的归一化有关。在进行离散傅里叶变换 (DFT) 或其快速算法FFT时,变换的结果是从时域到频域的映射。对于长度为 N N N 的信号 x [ n ] x[n] x[n] ,其 DFT定义为:
X [ k ] = ∑ n − 0 N − 1 x [ n ] ⋅ e − j 2 π N k n X[k]=\sum_{n-0}^{N-1} x[n] \cdot e^{-j \frac{2 \pi}{N} k n} X[k]=n0N1x[n]ejN2πkn

其中 X [ k ] X[k] X[k] 是信号在频域的表示, n n n 是时域样本的指标, k k k 是频域样本的指标, j j j 是虚数单位。

这个变换将时域信号转换成频域的形式,但是没有对转换后的幅值进行归一化。因此,当你计算DFT的逆变换 (IDFT) 来恢复原始信号时,你会使用以下公式:
x [ n ] = 1 N ∑ k − 0 N − 1 X [ k ] ⋅ e j 2 π N k n x[n]=\frac{1}{N} \sum_{k-0}^{N-1} X[k] \cdot e^{j \frac{2 \pi}{N} k n} x[n]=N1k0N1X[k]ejN2πkn

注意到这里有一个乘以 1 / N 1 / N 1/N 的因子。这个因子确保了在变换和逆变换过程中能量的守恒,即你可以从频域表示 X [ k ] X[k] X[k] 无损地恢复出原始的时域信号 x [ n ] x[n] x[n]

在某些情况下,人们选择在FFT之后立即乘以 1 / N 1 / N 1/N ,使得频域的幅值直接反映了原始信号的幅值,从而使其更直观。这样做的一个好处是,它简化了解释FFT输出的幅度谱,因为每个点的幅度直接对应于该频率成分在原始信号中的实际幅度。

在其他情况下,人们可能会在进行逆FFT (IFFT) 之前保留不乘 1 / N 1 / N 1/N 的FFT结果,然后在IFFT后乘以 1 / N 1 / N 1/N ,以保证恢复的时域信号与原始信号的幅值一致。选择哪种方式取决于应用的具体要求和个人偏好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值