误比特率BER的推导

1. 数字信号接收的统计模型与最佳接收准则:似然准则B站通信原理课程主讲张锦浩

参考资料:https://www.bilibili.com/video/BV1V3411P7Xx/?p=51&spm_id_from=pageDriver

接收数字信号原理框图

这张图片描述了加性高斯白噪声的统计特性。

- r ( t ) r(t) r(t) 表示接收的信号,是发送的信号 s ( t ) s(t) s(t) 与噪声 n ( t ) n(t) n(t) 的叠加。
- n ( t ) n(t) n(t) 是高斯白噪声,其平均值为0,方差为 σ n 2 \sigma^2_n σn2

主要描述了高斯白噪声的概率密度函数:

  1. 对于单一变量 n n n,其概率密度函数为:
    f ( n ) = 1 2 π σ n exp ⁡ ( − n 2 2 σ n 2 ) f(n) = \frac{1}{\sqrt{2\pi \sigma_n}} \exp \left( -\frac{n^2}{2\sigma_n^2} \right) f(n)=2πσn 1exp(2σn2n2)
    这是标准的高斯分布公式,其中 σ n \sigma_n σn 是噪声的标准差。

  2. 对于 k k k维向量 n = ( n 1 , n 2 , . . . , n k ) n = (n_1, n_2, ..., n_k) n=(n1,n2,...,nk),每一个元素 n i n_i ni 都是独立的高斯随机变量,其联合概率密度函数为:
    f ( n ) = 1 ( 2 π σ n ) k exp ⁡ ( − 1 2 σ n 2 ∑ i = 1 k n i 2 ) f(n) = \frac{1}{(2\pi \sigma_n)^k} \exp \left( -\frac{1}{2\sigma_n^2} \sum_{i=1}^k n_i^2 \right) f(n)=(2πσn)k1exp(2σn21i=1kni2)
    这是 k k k维独立高斯随机变量的联合概率密度函数。

此外,噪声 n ( t ) n(t) n(t) 是影响接收信号 r ( t ) r(t) r(t) 的主要因素,并且接收信号 r ( t ) r(t) r(t) 是发送信号 s ( t ) s(t) s(t) 和噪声 n ( t ) n(t) n(t) 的叠加。

噪声空间统计特性
这张图片进一步讨论了加性高斯白噪声的统计特性和其相关的数学表达式。

1. n ( t ) n(t) n(t) 的样本函数在时间区间 ( 0 , T B ) (0, T_B) (0,TB) 内是非相关的,并且在这个时间区间内的随机变量分布是独立的。
2. 在频率区间 ( 0 , f H ) (0, f_H) (0,fH),采样频率 f s = 2 f H f_s = 2f_H fs=2fH。从这里得到采样点数 k = 2 f H ⋅ T B k = 2f_H \cdot T_B k=2fHTB
3. n 2 ( t ) n^2(t) n2(t) 是噪声功率,并由以下等式给出:
n 2 ( t ) = 1 T B ∫ 0 T B n 2 ( t ) d t = 1 k ∑ i = 1 k n i 2 = 1 T B ⋅ 1 2 f H ∑ i = 1 k n i 2 n^2(t) = \frac{1}{T_B} \int_0^{T_B} n^2(t)dt = \frac{1}{k} \sum_{i=1}^k n_i^2 = \frac{1}{T_B} \cdot \frac{1}{2f_H} \sum_{i=1}^k n_i^2 n2(t)=TB10TBn2(t)dt=k1i=1kni2=TB12fH1i=1kni2
4. 噪声功率谱密度 n 0 n_0 n0 是一个重要的参数,定义如下:
σ n 2 = n 0 f H \sigma_n^2 = n_0 f_H σn2=n0fH
n 0 = σ n 2 f H = 6 σ n 2 f H n_0 = \frac{\sigma_n^2}{f_H} = \frac{6\sigma_n^2}{f_H} n0=fHσn2=fH6σn2
5. 另外一个关于 n n n 的概率密度函数为:
f ( n ) = 1 2 π σ n exp ⁡ ( − 1 n 0 ∫ 0 T B n 2 ( t ) d t ) f(n) = \frac{1}{\sqrt{2\pi \sigma_n}} \exp \left( -\frac{1}{n_0} \int_0^{T_B} n^2(t)dt \right) f(n)=2πσn 1exp(n010TBn2(t)dt)
其中 n ( t ) n(t) n(t) 代表的是噪声, σ n \sigma_n σn 代表噪声的标准差, n 0 n_0 n0 是噪声的功率谱密度。

从上述内容可以看出,这些公式都是关于噪声的统计特性和其在不同时间和频率范围内的性质。这对于通信系统设计和分析非常重要,特别是在需要考虑噪声影响的情况下。

接收电压统计特性
这张图片描述了与接收信号 r ( t ) r(t) r(t) 相关的统计分析。具体内容如下:

  1. 在时间间隔 ( 0 , T B ) (0, T_B) (0,TB) 内,接收信号可以表示为: r ( t ) = n ( t ) + s i ( t ) r(t) = n(t) + s_i(t) r(t)=n(t)+si(t)
    其中 n ( t ) n(t) n(t) 是噪声,而 s i ( t ) s_i(t) si(t) 是发送的信号。

  2. 当我们在没有发送信号 s i ( t ) s_i(t) si(t) 的情况下观察 r ( t ) r(t) r(t),其统计特性与 n ( t ) n(t) n(t) 完全一致。

  3. 对于接收向量 r ( t ) r(t) r(t),其有 k k k 个采样点组成,具体可以表示为:
    n ⃗ = ( n 1 , n 2 , . . . , n k ) \vec{n} = (n_1, n_2, ..., n_k) n =(n1,n2,...,nk)
    r ⃗ = ( r 1 , r 2 , . . . , r k ) \vec{r} = (r_1, r_2, ..., r_k) r =(r1,r2,...,rk)

  4. 对于 r ( t ) r(t) r(t) 的概率密度函数 f i ( r ) f_i(r) fi(r)似然函数):
    f i ( r ) = 1 ( 2 π σ n ) k exp ⁡ ( − 1 n 0 ∫ 0 T B [ r ( t ) − s i ( t ) ] 2 d t ) f_i(r) = \frac{1}{(\sqrt{2\pi \sigma_n})^k} \exp \left( -\frac{1}{n_0} \int_0^{T_B} [r(t) - s_i(t)]^2 dt \right) fi(r)=(2πσn )k1exp(n010TB[r(t)si(t)]2dt)
    这里, i i i 可以取值为 1 , 2 , . . . , m 1, 2, ..., m 1,2,...,m,其中 m m m 是可能的发送信号的数量。

  5. 当发送的信号是 s 0 ( t ) s_0(t) s0(t) 时,接收到的信号 r ( t ) r(t) r(t) 的概率密度函数近似为 f 0 ( r ) f_0(r) f0(r)。其他发送信号的情况下, r i ( t ) r_i(t) ri(t) 的概率密度函数近似为 f i ( r ) f_i(r) fi(r) 以此类推。

似然准则1

这张图片描述了在数字通信中关于二进制信号的误码率计算。图中展示了两个信号(标记为“0”和“1”)在接收端的概率密度函数,以及如何确定接收信号的阈值以最小化误码率。

  1. 信号和它们的先验概率:

    • 发送“0”对应信号 (s_0(t)) 与其先验概率 (P(0))
    • 发送“1”对应信号 (s_1(t)) 与其先验概率 (P(1))
  2. 误码率的计算:

    • P e P_e Pe 表示误码率,定义为:
      P e = P ( 1 ) P ( 0 ∣ 1 ) + P ( 0 ) P ( 1 ∣ 0 ) P_e = P(1)P(0|1) + P(0)P(1|0) Pe=P(1)P(0∣1)+P(0)P(1∣0)
      其中, P ( 0 ∣ 1 ) P(0|1) P(0∣1)是在发送“1”时误检为“0”的概率,而 P ( 1 ∣ 0 ) P(1|0) P(1∣0)是在发送“0”时误检为“1”的概率。
  3. 决策阈值:

    • r 0 r_0 r0 是决策阈值,当接收到的信号 r > r 0 r > r_0 r>r0 时,判断为“1”,反之判断为“0”。
  4. 概率密度函数:

    • f 0 ( r ) f_0(r) f0(r) f 1 ( r ) f_1(r) f1(r) 分别是在发送“0”和“1”时的接收信号的概率密度函数。
    • 图中展示了两个概率密度函数与阈值 r 0 r_0 r0 的交点。
  5. 最优阈值:

    • 为了最小化误码率,可以通过计算概率密度函数的导数与阈值 r 0 r_0 r0 的关系来确定 r 0 r_0 r0 的最优值。
    • d P e d r 0 = 0 \frac{dP_e}{dr_0} = 0 dr0dPe=0 时,误码率最小。
    • 并且, f 0 ( r 0 ) = P ( 1 ) P ( 0 ) f 1 ( r 0 ) f_0(r_0) = \frac{P(1)}{P(0)} f_1(r_0) f0(r0)=P(0)P(1)f1(r0)
  6. 计算误检概率:

    • 当发送“1”时误检为“0”的概率(红色阴影) P ( 0 ∣ 1 ) = ∫ − ∞ r 0 f 1 ( r ) d r P(0|1) = \int_{-\infty}^{r_0} f_1(r) dr P(0∣1)=r0f1(r)dr
    • 当发送“0”时误检为“1”的概率(蓝色阴影) P ( 1 ∣ 0 ) = ∫ r 0 ∞ f 0 ( r ) d r P(1|0) = \int_{r_0}^{\infty} f_0(r) dr P(1∣0)=r0f0(r)dr

最大似然准则
首先,我们要了解在通信系统中,为了决定传送的信息信号是“0”还是“1”,需要一个决策机制。这通常基于接收到的信号强度(或其他特征)与一个预定的阈值进行比较。但这个决策过程可能会出错,因为存在噪声或其他干扰。

  1. 信号模型与阈值
    公式 f 0 ( r 0 ) f_0(r_0) f0(r0) f 1 ( r 0 ) f_1(r_0) f1(r0) 是两个条件概率密度函数,分别代表在“0”信号和“1”信号下接收到的 r 0 r_0 r0 的概率。其中, r 0 r_0 r0 是决策阈值,是一个关键参数,需要仔细选择以最小化误差概率。

  2. 决策规则
    - f 0 ( r ) f_0(r) f0(r) < f 1 ( r ) f_1(r) f1(r) :当接收到的信号 r r r 的在“0”信号下的概率小于在“1”信号下的概率时,我们判断接收到的是“1”信号。
    - f 0 ( r ) f_0(r) f0(r) > f 1 ( r ) f_1(r) f1(r) :反之,我们判断接收到的是“0”信号。

  3. 误差概率的变化
    坐标轴部分展示了误差概率 P e P_e Pe 如何随 r r r 变化。这个图描述了不同的阈值 r 0 r_0 r0 下误差概率的变化趋势。选择使得 P e P_e Pe 最小的 r 0 r_0 r0 值,就能得到最小的平均错误概率。

  4. 信号决策的最终输出
    综合上述决策规则和误差概率的变化,系统会输出一个决策结果,即信号是“0”还是“1”。

  5. 多进制最大似然准则
    多进制最大似然准则为:
    f i ( r ′ ) > f j ( r ) ,   i ≠ j f_i(r') > f_j(r), \ i \neq j fi(r)>fj(r), i=j 判为 s i ( t ) s_i(t) si(t)


2. 确知信号的最佳接收机

确知信号的概念
最佳接收机数学描述1
进一步推导
最佳接收机数学描述2
进一步推导
最佳接收机数学描述3
最佳接收机数学描述4
通过对似然比准则的分析,最终得到
最佳接收机误码率分析

在这里插入图片描述
进一步推导发0错判为1的概率

最佳接收机误码率分析2

最佳接收机误码率分析3

发1错判为0的概率
在这里插入图片描述
在这里插入图片描述
得出结论:信号差异越大,误码率越低

为了设计差异尽可能大的信号,引入互相关系数,来描述信号的关联程度和可分辨性,取值范围为[-1,1]

在这里插入图片描述

  • 互相关系数=0时,信号正交:这意味着两个信号在整个时间域上的内积为零,或在频域上乘积的面积为零。
  • 互相关系数=-1时,相关性最弱:这意味着两个信号是完全反相关的,一个信号可能是另一个信号的非零常数倍,但方向相反。
  • 互相关系数=1时,完全相关:这意味着两个信号是完全相关的,它们可能是相同的信号或一个信号是另一个信号的非零常数倍。

需要注意的是,互相关系数为0并不意味着信号间不存在任何类型的相关性,它仅仅意味着线性相关性为零。信号之间可能还存在其他非线性的相关性。
在这里插入图片描述
erfc ( x ) = 1 − erf ( x ) = 2 π ∫ x ∞ e − t 2 d t \text{erfc}(x)=1-\text{erf}(x)=\frac{2}{\sqrt{\pi}}\int_{x}^{\infty}e^{-t^2}d t erfc(x)=1erf(x)=π 2xet2dt
Q ( x ) = 1 2 erfc ( x 2 ) = 1 2 π ∫ x ∞ e − t 2 2 d t Q(x)=\frac{1}{2}\text{erfc}\left(\frac{x}{\sqrt{2}}\right) ={\frac{1}{\sqrt{2\pi}}\int_{x}^{\infty}e^{-\frac{t^2}{2}}}d t Q(x)=21erfc(2 x)=2π 1xe2t2dt

P e = Q ( E b ( 1 − ρ ) / n 0 2 ) \begin{equation} P_e=Q\left(\frac{E_b(1-\rho)/n_0}{2}\right)\end{equation} Pe=Q(2Eb(1ρ)/n0)
n 0 是噪声的功率谱密度 ; E b 是信号码元平均能量 ; ρ 是码元之间的互相关系数 n_0是噪声的功率谱密度;\\E_b是信号码元平均能量;\\\rho 是码元之间的互相关系数 n0是噪声的功率谱密度;Eb是信号码元平均能量;ρ是码元之间的互相关系数
n 0 n_0 n0 是噪声的功率谱密度
在这里插入图片描述


3. AWGN 信道和瑞利信道下M-QAM信号的BER

对于 AWGN 信道和瑞利信道, M-QAM 信号的误比特率 (Bit Error Rate, BER) 分别为
P c = 2 ( M − 1 ) M log ⁡ 2 M Q ( 6 E b N 0 ⋅ log ⁡ 2 M M 2 − 1 ) :  AWGN 信道  P_{\mathrm{c}}=\frac{2(M-1)}{M \log _2 M} Q\left(\sqrt{\frac{6 E_{\mathrm{b}}}{N_0} \cdot \frac{\log _2 M}{M^2-1}}\right): \text { AWGN 信道 } Pc=Mlog2M2(M1)Q(N06EbM21log2M ): AWGN 信道 


P e = M − 1 M log ⁡ 2 M ( 1 − 3 γ log ⁡ 2 M / ( M 2 − 1 ) 3 γ log ⁡ 2 M / ( M 2 − 1 ) + 1 ) :  瑞利衰落信道  P_{\mathrm{e}}=\frac{M-1}{M \log _2 M}\left(1-\sqrt{\frac{3 \gamma \log _2 M /\left(M^2-1\right)}{3 \gamma \log _2 M /\left(M^2-1\right)+1}}\right): \text { 瑞利衰落信道 } Pe=Mlog2MM1(13γlog2M/(M21)+13γlog2M/(M21) ): 瑞利衰落信道 

其中, γ = E b / N 0 , M \gamma=E_{\mathrm{b}} / N_0, M γ=Eb/N0,M 为调制阶数, Q(\cdot)$ 为标准误差函数, 定义为
Q ( x ) = 1 2 π ∫ x ∞ e − t 2 / 2   d t Q(x)=\frac{1}{\sqrt{2 \pi}} \int_x^{\infty} \mathrm{e}^{-t^2 / 2} \mathrm{~d} t Q(x)=2π 1xet2/2 dt

下面是 AWGN 信道中 M-QAM 信号的误比特率 (BER) 的推导:

  1. M-QAM 符号和最小距离:
    对于 M-QAM,我们有一个 M × M \sqrt{M} \times \sqrt{M} M ×M 的正方形格点。每个格点表示一个唯一的符号。相邻符号之间的最小欧几里得距离是最容易受到噪声影响的。假设 d m i n d_{min} dmin 是两个相邻符号之间的最小欧几里得距离。
    对于正方形 QAM:
    d m i n 2 = 6 E s M − 1 d_{min}^2 = \frac{6E_s}{M-1} dmin2=M16Es
    其中 E s E_s Es 是每个符号的平均能量。

  2. 噪声标准偏差与 E b / N 0 E_b/N_0 Eb/N0 的关系:
    σ 2 \sigma^2 σ2 是单比特的噪声功率。在 AWGN 信道中:
    σ 2 = N 0 2 \sigma^2 = \frac{N_0}{2} σ2=2N0
    E b / N 0 E_b/N_0 Eb/N0 是每比特的能量与噪声功率谱密度之比。考虑到每个符号代表 log ⁡ 2 ( M ) \log_2(M) log2(M) 个比特,我们有:
    E b = E s log ⁡ 2 ( M ) E_b = \frac{E_s}{\log_2(M)} Eb=log2(M)Es
    代入噪声的标准偏差,我们得到:
    σ = N 0 2 = E s 2 log ⁡ 2 ( M ) × ( E b / N 0 ) \sigma = \sqrt{\frac{N_0}{2}} = \sqrt{\frac{E_s}{2\log_2(M)\times(E_b/N_0)}} σ=2N0 =2log2(M)×(Eb/N0)Es

  3. 高斯噪声和误差函数:
    在 AWGN 信道中,噪声是高斯分布的。因此,噪声引起的误判概率可以通过误差函数来描述。考虑到最小距离和噪声的标准偏差 σ \sigma σ,误判的概率为式(1):
    P e = Q ( d m i n 2 σ ) P_e = Q\left(\frac{d_{min}}{2\sigma}\right) Pe=Q(2σdmin)
    d m i n d_{min} dmin σ \sigma σ 的表达式代入上式,我们得到:

P e = Q ( 3 E s log ⁡ 2 ( M ) ( E b / N 0 ) M − 1 ) P_e = Q\left(\sqrt{\frac{3E_s\log_2(M)(E_b/N_0)}{M-1}}\right) Pe=Q(M13Eslog2(M)(Eb/N0) )

但是我们想要的是 BER,即每比特的误判概率,而不是每符号的误判概率。考虑到每个符号代表 log ⁡ 2 ( M ) \log_2(M) log2(M) 个比特,并且最坏的情况是其中的一个比特出错,我们得到:
B E R = P e log ⁡ 2 ( M ) BER = \frac{P_e}{\log_2(M)} BER=log2(M)Pe

  1. 得到最终表达式:
    代入前面的公式,我们得到:
    B E R = 2 ( M − 1 ) M log ⁡ 2 ( M ) Q ( 6 E b N 0 ⋅ log ⁡ 2 ( M ) M 2 − 1 ) BER = \frac{2(M-1)}{M\log_2(M)} Q\left(\sqrt{\frac{6E_b}{N_0}\cdot\frac{\log_2(M)}{M^2-1}}\right) BER=Mlog2(M)2(M1)Q N06EbM21log2(M)

这就是 AWGN 信道中 M-QAM 信号的误比特率 (BER) 的推导。需要注意的是,这个推导是在一些假设和近似的基础上进行的,例如高信噪比近似。在实际情况中,可能需要进行更精确的计算或仿真来得到准确的 BER。

对于瑞利衰落信道中的 M-QAM 信号的误比特率 (BER) 推导,相对复杂些,涉及到瑞利分布、高斯分布以及它们之间的关系。下面是基本的推导流程:

  1. 瑞利分布的概率密度函数:
    瑞利分布的概率密度函数 (pdf) 为:
    f ( r ) = r σ 2 exp ⁡ ( − r 2 2 σ 2 ) f(r) = \frac{r}{\sigma^2} \exp \left( -\frac{r^2}{2\sigma^2} \right) f(r)=σ2rexp(2σ2r2)
    其中, r r r 是接收信号的振幅, σ 2 \sigma^2 σ2 是接收信号功率的均值。

  2. 条件误比特率:
    首先,我们需要找到在给定接收信号幅度 r r r 下的条件误比特率。在高信噪比下,这近似为:
    P b ( r ) = Q ( r 3 log ⁡ 2 ( M ) / ( M 2 − 1 ) σ ) P_b(r) = Q\left(\frac{r\sqrt{3\log_2(M)/(M^2-1)}}{\sigma}\right) Pb(r)=Q(σr3log2(M)/(M21) )
    其中 Q ( ⋅ ) Q(\cdot) Q() 是 Q 函数。

  3. 整体误比特率:
    然后,我们需要求取所有可能的 r r r 值上的平均误比特率。这可以通过与瑞利分布的 pdf 进行积分来完成:
    P b = ∫ 0 ∞ P b ( r ) f ( r )   d r P_b = \int_{0}^{\infty} P_b(r) f(r) \, dr Pb=0Pb(r)f(r)dr
    这个积分是非常复杂的,通常涉及到许多数学技巧和近似。

  4. 简化和最终表达式:
    在某些情况下,上述积分可以简化,例如,对于 4-QAM (即 M=4)。但对于更高的 M 值,该表达式会变得相当复杂,通常需要数值方法来求解。
    对于 M-QAM 和瑞利信道的一种常见的近似误比特率表达式是:
    P e = M − 1 M log ⁡ 2 ( M ) ( 1 − 3 γ log ⁡ 2 ( M ) / ( M 2 − 1 ) 3 γ log ⁡ 2 ( M ) / ( M 2 − 1 ) + 1 ) P_e = \frac{M-1}{M\log_2(M)}\left(1-\sqrt{\frac{3\gamma\log_2(M)/(M^2-1)}{3\gamma\log_2(M)/(M^2-1)+1}}\right) Pe=Mlog2(M)M1(13γlog2(M)/(M21)+13γlog2(M)/(M21) )
    其中 γ = E b / N 0 \gamma = E_b/N_0 γ=Eb/N0
    要注意的是,这个表达式是基于高信噪比条件下的近似,并且也有其他的近似方法。完整的推导会涉及到复杂的积分、瑞利分布与高斯分布之间的关系等等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值