CompHub 实时聚合多平台的数据类(Kaggle、天池…)和OJ类(Leetcode、牛客…)比赛。本账号会推送最新的比赛消息,欢迎关注!
更多比赛信息见 CompHub主页 或 点击文末阅读原文
以下内容摘录自比赛主页
Part1赛题介绍
题目
NASA Harvest Field Boundary Detection Challenge
举办平台
背景
Small farms (<2ha) produce about 35% of the world’s food, and are mostly found in low- and middle-income countries. Mapping these farms allows policy-makers to allocate resources and monitor the impacts of extreme events on food production and food security. Unfortunately, these field-level maps remain mostly unavailable in low and middle income countries, where the food insecurity risk is highest. Combining machine learning with Earth Observation data from satellites like the PlanetScope constellation can help improve agricultural monitoring, cropland mapping, and disaster risk management for these small farms.
Part2时间安排
-
Competition closes on 26 February 2023.
-
Final submissions must be received by 11:59 PM GMT.
-
We reserve the right to update the contest timeline if necessary.
Part3奖励机制
-
1st Place: $2 500 USD
-
2nd Place: $1 500 USD
-
3rd Place: $1 000 USD
Part4赛题描述
In this challenge, the goal is to classify crop field boundaries using multispectral observations collected by PlanetScope, available through the NICFI basemaps program. Fields are located in Rwanda’s Eastern Province (Intara y’lburasirazuba) and spread over the districts of Gatsibo and Nyagatare. The NASA Harvest Rwanda field boundary training dataset was generated by TaQadam through a team of annotators, and curated by Radiant Earth Foundation.
Part5比赛数据
The dataset for this competition includes a time series of satellite imagery from Planet’s NICFI basemaps (license agreement) and labels for field boundaries that were annotated on the same imagery source. The labels were digitized over Planet Basemaps for the months of March, April (on season) and August (off season) of 2021 by a team of annotators from TaQadam. An additional 3 months of imagery (October, November and December) are added to the time series data and are then matched with corresponding field boundary labels.
Part6评测指标
The evaluation metric for this challenge is Recall