目录
一、零样本检测技术革新意义
1.1 传统检测 vs 零样本检测
1.2 技术突破点解析
-
跨模态对齐:CLIP模型实现图文特征空间映射,奠定零样本基础16
-
动态查询机制:OWL-ViT通过文本提示动态生成检测头,突破固定类别限制1
-
工业级创新:FiLo方法结合大语言模型实现细粒度异常描述,检测精度提升37%10
二、核心技术架构深度解读
2.1 OWL-ViT模型架构
关键技术创新点:
-
动态权重注入:将文本嵌入向量作为检测头参数,实现即插即用
-
二分匹配损失:解决预测框与真实框的对应关系问题
-
多尺度特征融合:在Transformer各层提取跨分辨率特征
2.2 训练策略演进
训练阶段 | 数据需求 | 优化目标 | 工业应用案例 |
---|---|---|---|
CLIP预训练 | 4亿图文对 | 图文对齐损失 | 通用特征提取 |
检测微调 | COCO等标准数据集 | 框坐标回归+分类损失 | 常规物体检测 |
零样本推理 | 无需新数据 | 文本提示动态适配 | 新品识别/缺陷检测 |