【BZOJ4548】小奇的糖果

Description

有 N 个彩色糖果在平面上。小奇想在平面上取一条水平的线段,并拾起它上方或下方的所有糖果。求出最多能够拾

起多少糖果,使得获得的糖果并不包含所有的颜色。
Input

包含多组测试数据,第一行输入一个正整数 T 表示测试数据组数。

接下来 T 组测试数据,对于每组测试数据,第一行输入两个正整数 N、K,分别表示点数和颜色数。
接下来 N 行,每行描述一个点,前两个数 x, y (|x|, |y| ≤ 2^30 - 1) 描述点的位置,最后一个数 z (1 ≤ z ≤
k) 描述点的颜色。
对于 100% 的数据,N ≤ 100000,K ≤ 100000,T ≤ 3
Output

对于每组数据在一行内输出一个非负整数 ans,表示答案

Sample Input

1

10 3

1 2 3

2 1 1

2 4 2

3 5 3

4 4 2

5 1 2

6 3 1

6 7 1

7 2 3

9 4 2

Sample Output

5
HINT

Source

By Hzwer

跟CERC那题差不多..
因为有负数所以正着一遍反着一遍

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MAXN 100010
#define lowbit(x) (x&(-x))
#define GET (ch>='0'&&ch<='9')
#define LL long long
using namespace std;
template<class classname>
inline void in(classname &x)
{
    char ch=getchar();x=0;int flag=1;
    while (!GET)    flag=ch=='-'?-1:1,ch=getchar();
    while (GET) x=x*10+ch-'0',ch=getchar();x*=flag;
}
int ans,T,n,k;
int c[MAXN],sta[MAXN];
int last[MAXN],pos[MAXN],l[MAXN],r[MAXN];
struct node {   int x,y,w,id;   }s[MAXN];
inline void add(int x,int val)  {   for (;x<=n+1;x+=lowbit(x))  c[x]+=val;  }
inline int query(int x)
{
    int ret=0;
    for (;x;x-=lowbit(x))   ret+=c[x];
    return ret;
}
inline bool cmpx(node a,node b) {   return a.x<b.x; }
inline bool cmpy(node a,node b) {   return a.y<b.y; }
void solve()
{
    memset(last,0,sizeof(last));memset(c,0,sizeof(c));
    sort(s+1,s+n+1,cmpx);pos[0]=0;pos[n+1]=n+1;
    for (int i=1;i<=n;++i)  add(s[i].x,1);
    for (int i=1;i<=n;++i)
    {
        int now=s[i].id,L=last[s[i].w];
        l[now]=L;r[now]=n+1;last[s[i].w]=now;
        if (L)  r[L]=now;
        if (pos[L]+1<=pos[now]-1)   ans=max(ans,query(pos[now]-1)-query(pos[L]));
    }
    for (int i=1;i<=k;i++)  if (pos[last[i]]+1<=n)  ans=max(ans,query(n+1)-query(pos[last[i]]));
    sort(s+1,s+n+1,cmpy);
    for (int i=1,j=1;i<=n;++i)
    {
        int now=s[i].id;
        while (j<=n&&s[j].y==s[i].y)    add(s[j++].x,-1);
        l[r[now]]=l[now];r[l[now]]=r[now];
        if (pos[r[now]]-1>=pos[l[now]]+1)   ans=max(ans,query(pos[r[now]]-1)-query(pos[l[now]]));
    }
}
int main()
{
    for (in(T);T;T--)
    {
        ans=0;in(n);in(k);
        for (int i=1;i<=n;++i)  in(s[i].x),in(s[i].y),in(s[i].w),s[i].id=i,sta[i]=s[i].x;
        sort(sta+1,sta+n+1);
        for (int i=1;i<=n;++i)  s[i].x=lower_bound(sta+1,sta+n+1,s[i].x)-sta,pos[i]=s[i].x;
        solve();
        for (int i=1;i<=n;++i)  s[i].y=-s[i].y;
        solve();
        printf("%d\n",ans);
    }
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/CreationAugust/article/details/51282625
文章标签: 树状数组
个人分类: 随便搞搞
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭