flink的常用Source和Sink

本文介绍了如何在Flink中使用KafkaSource和KafkaSink进行实时数据流处理,以及自定义的MySqlSource和MySqlSink实现数据的读写。通过示例代码展示了如何配置Kafka消费者和生产者,以及如何连接到MySQL数据库进行数据读取和写入操作,从而实现数据的完整流转。
摘要由CSDN通过智能技术生成

一、KafkaSource和KafkaSink

  由于flink经常用于对数据实时流进行处理,而我们经常使用Kafka可以对流数据进行削峰处理,所以flink Streaming经常和kafka一起使用
  在flink中已经对kafka的source和sink进行比较高的整合度了,所以使用很方便

def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    val result= env.readTextFile("filePath")
      .flatMap(_.split(" "))
      
	//addSource
	//kafka的consumer拿到数据供flink分析
	val props = new Properties()
    props.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"node1:9092,node2:9092")
    props.setProperty(ConsumerConfig.GROUP_ID_CONFIG,"cxv")
    val inputStream = env.addSource(new FlinkKafkaConsumer[String]("test", new SimpleStringSchema(), props))	

	//addSink
	//这里将从flink流中读出的数据放入kafka中,相当于是kafka的消费者
    result.addSink(new FlinkKafkaProducer[String]("node1:9092","test",new SimpleStringSchema()))

    env.execute()
  }

标题二、MySqlSource(自定义)和MySqlSink(自定义)

MysqlSource

def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment

    env.addSource(new MyJdbcSourceFunc)
      .print()

    env.execute()
  }
}

//继承RichParallelSourceFunction,实现其中的方法
class MyJdbcSourceFunc extends RichParallelSourceFunction[Worker]{
  var conn:Connection = _
  var pst:PreparedStatement = _
  var flag = true

  //建立数据库连接
  override def open(parameters: Configuration): Unit = {
    conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/testevery?characterEncoding=utf-8&&useSSL=false&serverTimezone=UTC","root","1994")
    pst = conn.prepareStatement("select * from worker")
  }


  //从数据库中取数据
  override def run(ctx: SourceFunction.SourceContext[Worker]): Unit = {
    while (flag){
      Thread.sleep(500)
      val rs = pst.executeQuery()
      while (rs.next()){
        val name = rs.getString(1)
        val salary = rs.getLong(2)

        ctx.collect(Worker(name,salary))
      }
    }
  }

  override def cancel(): Unit = {
    flag=false
  }
 //关闭连接
  override def close(): Unit = {
    if (pst != null) pst.close()
    if (conn != null) conn.close()

  }
}

MysqlSink

//定义一个Worker样例类
case class Worker(name:String,salary:Long)

def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    val dataStream = env.readTextFile("filePath")
      .map(line => {
        val ps = line.split(",")
        Worker(ps(0).toString, ps(1).toLong)
      })

    dataStream.addSink(new MyJDBCSinkFunc)

    env.execute()
  }
}

class MyJDBCSinkFunc extends RichSinkFunction[Worker]{
 var conn:Connection = _
  // 检查数据库有没有,没有就插入,有就更新
  var upDateStatement:PreparedStatement = _
  var insertStatement:PreparedStatement = _


  // 创建数据库连接
  override def open(parameters: Configuration): Unit = {
      conn = DriverManager.getConnection(
        "jdbc:mysql://localhost:3306/testevery?characterEncoding=utf-8&useSSL=false&serverTimezone=UTC",
        "user",
        "password")

      upDateStatement = conn.prepareStatement("update worker set salary=? where name=?")
      insertStatement = conn.prepareStatement("insert into worker values(?,?)")
    }

    override def invoke(value: Worker, context: SinkFunction.Context): Unit = {
      upDateStatement.setString(2,value.name)
      upDateStatement.setLong(1,value.salary)
      upDateStatement.execute()
      if (upDateStatement.getUpdateCount == 0){
        insertStatement.setString(2,value.name)
        insertStatement.setLong(1,value.salary)
        insertStatement.execute()
      }
    }

    // 关闭数据库连接
    override def close(): Unit = {

      if (insertStatement != null) insertStatement.close()
      if (upDateStatement != null) insertStatement.close()
      if (conn != null) insertStatement.close()
  }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值