Cy_coding
码龄5年
关注
提问 私信
  • 博客:270,884
    社区:31
    问答:927
    动态:16
    271,858
    总访问量
  • 88
    原创
  • 1,369,248
    排名
  • 46
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2020-03-11
博客简介:

Cy_coding的博客

查看详细资料
个人成就
  • 获得261次点赞
  • 内容获得37次评论
  • 获得778次收藏
  • 代码片获得1,672次分享
创作历程
  • 4篇
    2022年
  • 21篇
    2021年
  • 63篇
    2020年
成就勋章
TA的专栏
  • tensorflow
    8篇
  • 机器学习
    13篇
  • pytorch
    2篇
  • leetcode
    1篇
  • python小tips
    45篇
  • NLP
    1篇
  • 深度学习
    12篇
  • 算法实现
    2篇
  • silent speech
    1篇
  • numpy
    3篇
  • python音频信号处理
    3篇
  • unity
    5篇
  • 计算机视觉 图像处理
    1篇
  • python pandas
    2篇
  • C++ STL
    3篇
兴趣领域 设置
  • 人工智能
    语音识别机器学习深度学习神经网络tensorflow
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

pytorch tensorboard基本用法整理

tensorboard基本用法
原创
发布博客 2022.10.05 ·
547 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

Leetcode 反转字符串 II python解法

leetcode 反转字符串2
原创
发布博客 2022.09.13 ·
388 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python list pop方法

通过使用pop方法可以直接删除列表中的某一个对应元素并返回该元素值。
原创
发布博客 2022.09.06 ·
781 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

python中文字符串转list

本文主要记录了将中文字符串转换为list的过程,其中我们使用了keras preprocessing中的text_to_word_sequence方法。这个方法是完全适配中文的。需要注意的是,中文语料一般字符之间是没有空格分割的,这与英文是不同的。如下所示,如果我们直接进行转换,由于没有空格分词,会将字符串默认为一个字符。from tensorflow.keras.preprocessing.text import text_to_word_sequencetext = '我是人'token = te
原创
发布博客 2022.01.02 ·
1880 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

You must install pydot and graphviz for plotmodel to work报错如何处理

本文主要记录windows-anaconda环境下关于使用tensorflow.keras.utils.plot_model()方法时提示安装pydot 和 graphviz的解决方法。pydot的安装非常简单,进入anaconda python环境中,用pip进行安装就可以了。graphviz包的安装就要稍显复杂一些。首先我们点击下方链接下载完整的graphviz包 :graphviz下载链接下载完毕后,我们需要将路径添加到我们的系统路径中。选择我的电脑,高级系统设置,环境变量,新建。将
原创
发布博客 2021.12.01 ·
1551 阅读 ·
3 点赞 ·
0 评论 ·
1 收藏

深度学习分布式训练小结

分布式训练本质上是为了加快模型的训练速度,面对较为复杂的深度学习模型以及大量的数据。单机单GPU很难在有限的时间内达成模型的收敛。这时候就需要用到分布式训练。分布式训练又分为模型并行和数据并行两大类。数据并行在于...
原创
发布博客 2021.10.25 ·
1137 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

pip国内加载速度慢解决方法

在国内使用pip安装包时有时会发现安装速度非常慢,甚至连接不上源。为了加快pip的下载速度,我们可以主动使用 -i命令来切换到国内源。下面放出实测好用的国内源 :清华:https://pypi.tuna.tsinghua.edu.cn/simple阿里云:http://mirrors.aliyun.com/pypi/simple/中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/华中理工大学:http://pypi.hustunique.com/山东
原创
发布博客 2021.10.23 ·
1284 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

keras实现嘴唇图像autoencoder

本文分享了我在silent speech 项目过程中实现的基于嘴唇图像数据集的autoencoder自编码器。输入输出都是64∗6464*6464∗64的嘴唇灰度图。自编码器由编码解码两个部分构成,同时实现了利用checkpoint在每个epoch运算时,自动保存测试集loss更小的模型。数据集共包含84679张图片,其中前68728张图片作为训练集,后15951张图片作为测试集。import tensorflow as tffrom tensorflow.keras import layersf
原创
发布博客 2021.10.21 ·
501 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

机器学习理论梳理2 : KNN K近邻分类模型

本文主要梳理KPPV,K近邻模型的基本原理。从机器学习的大分类来看,K近邻模型属于监督学习中的一种判别式模型,常用于分类问题。初始的数据集中,包含了已经分类标签好的数据。一句话来说,K近邻模型就是通过计算实例与现有数据集中所有数据的数学距离,从中挑选出K个最近的例子。在这K个例子中,占据大多数的分类就是新的实例的分类。...
原创
发布博客 2021.10.21 ·
662 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

一文看懂卷积神经网络CNN的核心

在之前,我总结了关于计算机神经网络与梯度下降的核心,详见下文链接 :一文看懂计算机神经网络与梯度下降本文主要会对图像相关的机器学习中最为重要的网络,卷积神经网络作个人的理解分析。在讲述原理之前,我们先来解释为什么我们在图像及视频等等领域的机器学习中要使用CNN。我们都知道,使用多层感知器或者有隐藏层的神经网络可以帮助我们解决分类,聚合,回归问题。但当我们的输入输出转变为高维度的数据,例如图片时,不可避免地要面临神经元以及参数量过大的问题。假设我们使用一张720*480的图片作为输入,一张图片对应的参数
原创
发布博客 2021.10.20 ·
1326 阅读 ·
3 点赞 ·
0 评论 ·
8 收藏

npy一维数组如何对给出的索引进行反选

本文主要解释了如何根据给定的索引对一维数组进行反选的操作
原创
发布博客 2021.07.29 ·
2627 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

python一步将npy数据保存成mat

使用scipy库中的io模块,只需一步就可以将npy矩阵保存为mat格式文件
原创
发布博客 2021.07.19 ·
3936 阅读 ·
5 点赞 ·
0 评论 ·
9 收藏

如何使用python导入mat格式的数据并整理

使用scipy导入mat文件
原创
发布博客 2021.06.17 ·
7814 阅读 ·
6 点赞 ·
3 评论 ·
32 收藏

python numpy 分离与合并复数矩阵实部虚部的方法

在进行数字信号处理的过程中,我们往往有对短时傅里叶变换频谱(spectrogram)进行分析的需求。常见的分析手段对应欧拉公式分为两种,要么使用模与相位的形式,要么使用实部虚部。本文分享一个简单的将复数光谱图分解为实部与虚部以及将两个部分重新合并为一个复数矩阵的过程,以下为python代码。
原创
发布博客 2021.05.10 ·
5313 阅读 ·
1 点赞 ·
0 评论 ·
8 收藏

快速理解binary cross entropy 二元交叉熵

二元交叉熵损失函数原理
原创
发布博客 2021.05.05 ·
60372 阅读 ·
60 点赞 ·
2 评论 ·
177 收藏

keras中mean square error均方误差理解

机器学习中,针对不同的问题选用不同的损失函数非常重要,而均方误差就是最基本,也是在解决回归问题时最常用的损失函数。本文就keras模块均方误差的计算梳理了一些细节。
原创
发布博客 2021.04.14 ·
3725 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

keras模型中的默认初始化权重

权重的初始化,决定了模型训练的起点。一个良好的初始化可以加快训练过程,同时避免模型收敛至局部最小值。为了在训练过程中避免使得权重的变化总沿着同一个方向,我们尽量避免将所有权重都初始化为同一个值,如全0矩阵或全1矩阵。往往我们使用均匀分布或者正则分布初始化权重矩阵。在使用tensorflow框架时,keras为我们提供了许多封装好的层,其中常见的有Dense全连接层,Conv2D卷积层等等。查阅文档我们发现默认的权重初始化都使用了glorot uniform :Wij⇝U(−6n+m,6n+m) W_{i
原创
发布博客 2021.03.28 ·
3268 阅读 ·
3 点赞 ·
0 评论 ·
6 收藏

numpy一维数组永远为列向量

列向量转为行向量不适用transpose等函数
原创
发布博客 2021.03.18 ·
3328 阅读 ·
4 点赞 ·
1 评论 ·
8 收藏

tensorflow gpu windows配置步骤教学

window10配置tensorflowgpu 环境
原创
发布博客 2021.03.15 ·
806 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

pytorch学习笔记 1. pytorch基础 tensor运算

pytorch 基础tensor operations
原创
发布博客 2021.03.09 ·
814 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏
加载更多