快速体验
- 打开 InsCode(快马)平台 https://www.inscode.net
- 输入框内输入如下内容:
开发一个手游自动化测试原型,功能包括:1) 通过图像识别定位游戏UI元素 2) 模拟点击/滑动操作 3) 断言检测游戏状态 4) 生成简单测试报告。使用Python+OpenCV实现,要求代码模块化便于扩展。 - 点击'项目生成'按钮,等待项目生成完整后预览效果

最近在尝试为手游开发自动化测试方案时,发现用scrcpy配合Python脚本能快速搭建原型系统。这种轻量级方案不需要真机或模拟器,特别适合早期功能验证。下面分享我的具体实现思路和关键步骤。
-
环境准备与scrcpy基础配置
首先通过USB连接安卓设备并启用调试模式,安装scrcpy后只需一行命令就能将手机画面投射到电脑。相比传统方案,它直接使用ADB协议传输画面,延迟极低且不依赖第三方模拟器。 -
图像识别定位UI元素
用OpenCV的模板匹配功能识别游戏界面元素。将按钮、图标等关键UI保存为模板图片,通过阈值比较确定坐标位置。这里需要注意处理不同分辨率的适配问题,我采用相对坐标换算来提高泛化能力。 -
操作模拟与状态检测
借助ADB命令实现点击和滑动:根据识别到的坐标发送对应触摸事件。对于状态断言,可以截取特定区域进行像素分析,比如检测战斗结束时出现的胜利图标。OpenCV的直方图对比在这里很实用。 -
测试报告生成
用Python的logging模块记录操作步骤和断言结果,并生成HTML格式的简易报告。关键指标包括用例通过率、操作耗时和错误截图,这对快速迭代很有帮助。 -
模块化设计要点
将识别、操作、断言等功能拆分为独立类: - 设备控制层封装ADB调用
- 视觉处理层管理模板匹配算法
- 用例层组织测试逻辑 这样新增游戏场景时只需扩展对应模块。
实际测试发现,这套原型能在20分钟内验证基础玩法流程。虽然精度不如商业工具,但胜在零成本快速验证想法。比如测试抽卡系统时,通过识别“抽取”按钮坐标和结果弹窗,成功统计出五星角色的出货概率。
整个过程在InsCode(快马)平台的云环境中调试特别顺畅——不需要配置本地ADB环境,直接浏览器操作就能运行脚本。最惊喜的是调试时可以实时看到手机画面(就像这样:
),配合平台的一键部署功能(
),能把测试报告直接生成在线可访问的页面。这种低门槛的验证方式,很适合中小团队快速试错。
快速体验
- 打开 InsCode(快马)平台 https://www.inscode.net
- 输入框内输入如下内容:
开发一个手游自动化测试原型,功能包括:1) 通过图像识别定位游戏UI元素 2) 模拟点击/滑动操作 3) 断言检测游戏状态 4) 生成简单测试报告。使用Python+OpenCV实现,要求代码模块化便于扩展。 - 点击'项目生成'按钮,等待项目生成完整后预览效果
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

被折叠的 条评论
为什么被折叠?



