使用scikit-learn构建广义线性模型:Gamma回归
在机器学习中,广义线性模型(GLM)是一类常用的回归模型。GLM可以用于处理不同类型的响应变量,包括正态分布、泊松分布和伽马分布等。本文将介绍如何使用scikit-learn库构建广义线性模型,并以Gamma回归为例进行演示。
首先,确保你已经安装了scikit-learn库。你可以使用以下命令来安装:
pip install scikit-learn
接下来,让我们导入所需的库和模块:
import numpy as np
from sklearn.linear_model import GammaRegressor
from sklearn.model_selection import train_test_split